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Kurzfassung

Mobile Akteure, vom Menschen über autonome Fahrzeuge bis hin zu Augmented-Reality (AR)
Geräten, wären ohne eine näherungsweise Kenntnis ihrer aktuellen Position nicht funktions-
fähig. Die präzisesten Algorithmen verwenden zur Positionsabschätzung eine Vielzahl an Sen-
soren und benötigen eine hohe Rechenleistung. Kleine mobile Roboter und AR Geräte sind je-
doch gewichtsbeschränkt, arbeiten regelmäßig in Umgebungen, in denen keine externen Sen-
soren verwendet werden können und bieten nur begrenzte Rechenressourcen.

’Visual-inertial odometry’ (VIO) Algorithmen bieten eine Lösung für solche limitierten Geräte,
indem sie nur Bewegungsänderungen abschätzen. Die Algorithmen fusionieren inertiale Mes-
sungen mit Kamerainformationen und sind damit weiters ausschließlich von Sensorik am Gerät
abhängig. Der Stereokamera-basierte ’Multi-State Constraint Kalman Filter’ (MSCKF) ist ein
solcher odometrischer Algorithmus. Dieser wurde äußerst ressourcenschonend konzipiert und
liefert gleichzeitig eine mit anderen Implementierungen vergleichbare Positionsschätzung. Der
stereo MSCKF verwendet die Bewegung von Merkmalspunkten im Raum zur Korrektur der
inertialen Bewegungsabschätzung. Eine Variation des MSCKF extrahiert aus Bildern einer
Monokamera die photometrische Information mehrerer Pixelraster.

Auf Basis dieser photometrischen Implementierung des MSCKF präsentiert diese Arbeit die
Herleitung und Implementierung eines stereokamera-basierten photometrischen ’Multi-State
Constraint Kalman Filters’. Im ersten Schritt wird die Schätzung der Merkmalsposition im
Raum durch die Messung im ersten Kamerabild - dem Ankerbild - eingeschränkt. Auf Basis
dieser Formulierung wird die rasterbasierte stereo-photometrische Erweiterung konstruiert. Als
Grundlage der Implementierungen wird der Open Source ’Multi-State Constraint Kalman Filter’
von Kumar Robotics verwendet. Die Ankerbild- sowie die photometrische Erweiterung wer-
den separat evaluiert. Mit je 14,5 Stunden Messaufzeichnungen werden die Implementierun-
gen anhand eines Open Source Datensatzes umfassend bewertet. Der Ankerbild-basierte Fil-
ter weist im Vergleich zum stereo MSCKF eine Reduzierung der CPU-Last um 2,2% auf, bei
einem Anstieg des relativen quadratischen Mittelwertfehlers von 0,19% auf 0,29%. Der stereo-
photometrische Ansatz zeigt bei den meisten Aufnahmen eine mangelnde Robustheit, da er auf
eine qualitativ hochwertige Merkmalsauswahl angewiesen ist und eine geringe Fehlertoleranz
bei der Positionsabschätzung aufweist. Die Implementierung liefert einen relativen quadrati-
schen Mittelwertfehler von 1,1% beim Betrieb innerhalb der Fehlertoleranzen.

Schlagworte: VIO, MSCKF, Odometrie, Stereo, Kalman Filter, Visual-Inertial SLAM



Abstract

Position estimation is a fundamental component of an agent’s autonomy. Any mobile actor,
ranging from humans, over autonomous cars to augmented reality devices, would cease to
function without approximate knowledge of its current position. Therefore, extensive research
has been devoted to position estimation algorithms. High precision estimators use an array of
sensors and require a large amount of computational resources. But small mobile devices and
robots are severely payload-limited, regularly operate in environments where external sensors
are not feasible and offer only limited computing power.

Visual-inertial odometry is a class of algorithms commonly used when faced with these re-
strictions. Inertial information is fused with the data of one or multiple cameras making the al-
gorithms independent of external sensors. By only estimating the relative change of the vehicle
per time-step, the algorithms lose some of their accuracy but also greatly reduce the computa-
tional overhead. One of the most resource-friendly algorithms in this class is the stereo-camera
based Multi-State Constraint Kalman Filter, which maintains competitive estimation results. This
filter uses feature points to correct the predicted movement of the inertial sensor. A variation
on a mono-camera based Multi-State Constraint Kalman Filter instead uses pixel-patches of
photometric measurements as a basis for the cost function.

This thesis presents the derivation and implementation of a stereo-camera based photometric
Multi-State Constraint Kalman Filter. Additionally, the feature position estimation of the stereo
Multi-State Constraint Kalman Filter is reformulated, constraining the feature position by the
first camera measurement - the anchor frame. Both implementations are based on the open-
source implementation of the Multi-State Constraint Kalman Filter pipeline by Kumar Robotics.
Both implementations are extensively evaluated using 14.5 hours of sensor recordings from
open-source datasets. The anchor-frame based filter shows a 2.2% reduction in CPU load
with a relative root mean square error (RMSE) increase from 0.19% to 0.29%. The stereo-
photometric approach shows a lack of robustness in most recordings, as it is dependent on
high-quality feature selection and has a small error tolerance. The implementation returns an
accuracy of 1.1% relative RMSE when operating within the error tolerances, showing promise
for increased robustness in future implementations.

Keywords: VIO, MSCKF, Odometry, Stereo, Kalman Filter, Visual-Inertial SLAM
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1 Introduction

Any autonomous robot - a robotic vacuum cleaner, a self-driving car or a delivery quad-copter
- benefits from knowing its current position. Location estimation in a known or unknown en-
vironment, allows a mobile robot to make a deliberate choice of movements and operations
concerning its surroundings. The robotic vacuum cleaner can clean the house more efficiently
and both the autonomous car and the quad-copter may navigate safely to their goal. To become
a truly autonomous agent, any such drone needs answers to the three questions regarding its
surroundings:

• What is the structure of the environment I am in?
• Where am I with respect to this environment?
• How do I achieve the desired position in this environment?

In a tightly controlled environment, it is possible to come close to having exact answers to
all three of these questions. Amazon warehouse robots [1], for example, use global markers to
constantly correct their position estimation. The unchanging warehouse surroundings can be
represented in a precise map. Using this exact global position information and description of
the environment, the robots can accurately transport packages through the hangar.

Contrary to this near-optimal example, many practical applications neither have a map of
the environment nor is there a constant source of accurate global position information. This is
true for the previous examples of the autonomous car and the vacuum cleaner, but also au-
tonomous filming quad-copters (eg. Skydio [2]), mobile industrial robots (MiR [3], OTTO [4])
and augmented reality devices [5, 6]. In addition to this lack of information about the environ-
ment, the maximum computational capacity is severely limited. This is the case especially for
smaller mobile robots such as the robotic vacuum cleaner or quad-copters, where a decreased
payload capacity and power limitations are the reason for these boundaries.

Even without a preexisting map, a robot’s position can be estimated. These algorithms are
either based on simultaneous localization and mapping (SLAM) or pure odometry - the first of
which generates a map while moving around and the second uses only the most recent in-
formation to estimate its ego-motion during the respective time-frame [7]. Examples for both
algorithms are further detailed in the related literature chapter 3. Odometry makes sense for
applications with limited available computing power, hard real-time constraints or where the en-
vironment is in constant flux, making any effort of mapping futile [7].
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The initially presented exemplary robots must be able to operate without any external sen-
sors or markers. Otherwise, it would limit the robot’s ability to work in an unaccommodated
environment. Even when an autonomous car has a global positioning system (GPS) signal,
the received position estimation is not accurate enough to navigate a car based solely on this
information [8]. Various research focuses on merging this GPS information with other sensors
to increase the combined accuracy [9, 10]. Indoor operations have no access to any global in-
formation and need to rely solely on the sensors mounted on the vehicle; the Roomba 900 [11]
vacuum robot, for example, uses an onboard camera without the need of any external markers.
Position estimation of ground-based drones can sometimes be reduced to a two-dimensional
problem [12], contrary to aerial vehicles such as quad-copters. While wheeled mobile robots
such as the MiR 100 [3] or the Xiaomi Roborock [13] use 2D laser scanners, the sensors used
for three-dimensional estimation must return suitable three-dimensional information. Sensors
delivering such suitable information for mapping or odometry in 3D space include 3D laser
scanners [14], depth cameras [15], time-of-flight sensors [16] and even event cameras [17].
The respective papers present either a corresponding SLAM or odometry implementation. An-
other common sensor is the regular RGB or monochrome camera (see chapter 3.3).

Vision-based algorithms generally have a computational disadvantage compared to other po-
sition estimation algorithms, as the camera’s raw information volume tends to be large. This is
a main drawback of visual position estimators. This class of algorithms base their estimation
solely on onboard sensors - thus they have a significantly broader use-case compared to sys-
tems with a reliance on external information such as GPS or markers. Further, both cameras
and inertial measurement units are generally cheaper than the previously mentioned sensors.
Their comparatively high estimation accuracy adds another compelling argument to find a com-
putationally efficient solution based on visual information.

Visual-inertial odometry (VIO) is a growing set of algorithms which estimate ego-motion using
only visual and inertial information. At the expense of accuracy, VIOs are computationally
more efficient compared to other vision-based estimators. Self-contained data sources and
deployability on low-powered devices make these visual-inertial odometry algorithms generally
viable for mobile robotics and explicitly viable in the context of micro-areal vehicles (MAVs),
which are notoriously unfit for heavy calculations due to their payload constraint. Thus, a sizable
amount of research has been invested in the field of low-powered VIO. Chapter 3 will go into
further detail on vision estimators and the advantages of odometry. The Multi-State Constraint
Kalman Filter (MSCKF) VIO algorithm is both among the most computationally efficient in its
class and also one of the most robust VIO pipelines to date, as detailed in chapter 3.4. It uses
data from an inertial measurement unit (IMU) to estimate its current position and the movement
of tracked features in the past few camera frames to correct this estimation. Its derivation and
expansion will be the focus of this thesis.
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1.1 Motivation

The proposition of the company D-Aria [18] is to use an autonomous quad-copter to fully au-
tomate stock-taking in warehouses. Automating this process could save a company multiple
man-hours of labor, and would allow for continuous inventory evaluation throughout the year.
It, therefore, represents a desirable innovation for customers. To allow the robot to operate in
already existing warehouses, this indoor application must be independent of external informa-
tion. Neither external sensors or markers are available in the warehouse, nor is there access to
a preexisting map.

Limited computational resources, a payload capacity constraining the possible selection of
sensors and a lack of external sensors are therefore the constraints for the necessary pose
estimation algorithm on the quad-copter. These constraints force the estimator to be a part of
the toughest class of localization algorithms previously discussed.

VIO algorithm research aims to enhance the algorithm’s accuracy, while at the same time
decreasing the necessary calculation power. These conflicting interests allow for progress in
both directions - always leveraging the advancements of accuracy against the sacrificed com-
puting efficiency and vice versa. The research regarding VIO using monocular cameras is very
expansive. Recent implementations show, that stereo-camera VIOs behave more robustly in
test-scenarios. Photometry based visual odometry improves its accuracy by extracting more
detailed information when abstracting the recorded images. This makes the comparison be-
tween frames more granular. There currently exists no implementation combining these ap-
proaches inside the highly efficient Multi-State Constraint Kalman Filter (MSCKF) VIO. Expand-
ing the MSCKF to be more robust, while minimizing loss of efficiency, could ultimately allow the
quad-copter of D-Aria to operate autonomously in any setting.

1.2 Project Goal

The goal of this project is to utilize both the improvements achieved by a stereo-camera for-
mulation and the increased accuracy of the photometric approach in the Multi-State Constraint
Kalman Filter VIO framework. The stereo-camera MSCKF implementation, therefore, is to
be expanded by a photometric residual update-step, minimizing the erroneous movements of
pixel-patches in both camera frames around the features. A complete derivation of this stereo-
photometric MSCKF’s description, as well as a functioning implementation is the desired output.
The implementation focuses on correct algorithm design and not resource optimization.
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1.3 Project Output

The stereo-photometric expansion for the stereo MSCKF is implemented in two steps. A slightly
more resource-friendly anchor-frame based position estimator is designed first, which uses
additional constraints to reduce calculation load. Based on this formulation, the photometric
stereo-camera MSCKF is derived. The approach uses photometric patches from both cameras
and minimizes the covariance based on the error between the pixel patch in the anchor image
and the pixel measurement in the expected patch position.

Both formulations are evaluated separately in their absolute and relative accuracy against
ground truth information using a state-of-the-art evaluation data-set. These novel update im-
plementations are then compared to the accuracy of the stereo MSCKF implementation, with
the anchor-frame based formulation registering a slightly lower CPU footprint and a reduction
of accuracy of nearly 50%. The photometric implementation shows unstable behavior in most
data-sets and is very dependent on a tightly controlled feature selection, as the error toler-
ance margin is much slimmer compared to the feature-based approaches. The stereo MSCKF
remains the more robust MSCKF design and for the time being the most viable algorithm con-
cerning the use-case of the company D-Aria.

1.4 Structure

This section concludes the introduction. With this chapter, a context for use-cases of visual-
inertial odometry in the real world has been created. The project goal, the implementation
of an algorithm extending an existing VIO [19] approach, has been presented as well. The
project results have been summarized. Chapter 2 introduces the notation used throughout the
thesis, as well as a summary of some major concepts upon which this thesis is based. This
includes the Extended Kalman Filter and the Error-state Kalman Filter as well as the basics
of quaternion mathematics. Refer to the appendix for more details regarding these topics in
addition to inertial measurement units and camera models. Chapter 3 expands on different
position estimation approaches and concepts and gives a dissection of vision-based odometry
approaches. The presented algorithms are compared based on CPU usage and accuracy.

Chapter 4 presents the MSCKF framework, followed by the stereo-camera expansion. In
chapter 5 the feature estimation description using the anchor-frame is derived, designing the
MSCKF update steps accordingly. This description is expanded into the stereo-photometric
approach in chapter 6, where the derivation and underlying assumptions are detailed. The
evaluation in chapter 7 details the results of extensive tests, comparing the results of both the
anchor-frame and the stereo-photometric update design to the stereo MSCKF. The following
discussion, chapter 8, analyzes these results and provides some explanation to the observa-
tions. This chapter concludes with suggestions for future implementations. The final chapter 9
summarizes the work done in this thesis.
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2 Notation and Fundamental Concepts

This chapter defines the general notation used within this thesis (section 2.1, 2.2 and 2.3). The
Error-state Kalman Filter is described in section 2.4). For a more exhaustive explanation on the
topics, please refer to the appendix.
An introduction to stochastic state estimation using the Kalman Filter and the Extended Kalman
Filter can be found in appendix A. For a description of the pinhole camera model used in this
thesis, as well as an overview of extrinsic camera parameters, see appendix B. Inertial mea-
surement units (IMU), their modeling and noise behavior are discussed in appendix C. As the
algorithm designs in the following chapters rely on quaternions as rotation description, see
appendix D for a comprehensive description of quaternions and derivations regarding time-
differentiation and the small-angle approximation.

2.1 Notation

For the sake of consistency in MSCKF related work, the nomenclature used for this thesis
parallels the nomenclature of Mourikis et al. in their initial presentation of the MSCKF [20].

Scalars as lower-case regular letter c

Vectors written as lower-case bold letter p
Vectors as in brackets [ a b ]

Matrices as upper-case bold letter A
Unit quaternion with the letter q q

Unit vector with a bar ā

Estimations with a circumflex x̂

General Errors with a tilde x̃

Orientation Errors with a δ δθ

General operations are written as follows:

Transpose of a matrix or vector x>

Inverse of a matrix or function R−1

5



2.2 Quaternions

Expressing rotations in quaternion multiplication is the most efficient description concerning the
number of calculations [21]. For this reason, the quaternion rotation representation is exten-
sively used throughout this thesis. This section defines the quaternion nomenclature. For a
more precise definition of quaternion mathematics, an intuitive explanation of how they rep-
resent rotations, as well as some derivations to the concepts of small-angle rotation and the
quaternion time-derivative, see appendix D.

We use quaternions in the form of

q ,

 qv

qw

 =


qx

qy

qz

qw


with qx, qy and qz being the irrational components, while qw is the real component.

Note, that we use the ijk quaternion, as this notation is most commonly used in VIO im-
plementations generally and in the MSCKF implementations in particular. Although there are
no conceptional changes between these styles, some calculations are structured differently. A
comparison of the two can be found in the work of Sola et al. [22].

The quaternion product is defined by the ⊗ operator

p⊗ q =

 pwqv + qwpv + pv × qv
pwqw − p>v qv


where the non-commutative cross product is used. The quaternion multiplication can be al-
ternatively expressed by a matrix-vector multiplication, where, as the quaternion product is
non-commutative, two different matrix structures exist depending on the order.

q1 ⊗ q2 = [q1]Lq2 and q1 ⊗ q2 = [q2]R q1

which we define as

[q]L = qwI +

 [qv]× qv

−q>v 0

 , [q]R = qwI +

 − [qv]× qv

−q>v 0

 . (1)
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The cross product matrix [a]× is defined as

[a]× ,


0 −az ay

az 0 −ax
−ay ax 0

 .
We define a function C(·), which returns a rotation matrix R from a quaternion.

Rp = q⊗ p⊗ q∗

R = C(q) = (q2
w − q>v qv)I + 2qvq

>
v + 2qw[qv]× (2)

The small-angle approximation of a quaternion is calculated as

C(q)> = (1− 0)I + 0 + [θ]×

C(q)> ' I− [θ]× (3)

where we use θ from the axis-angle quaternion description

q =

u sin1
2θ

cos1
2θ


The time-derivative of a quaternion is

q̇ =
1

2
q⊗

ω
0

 (4)

with ω as the angular rate.

2.3 Extended Kalman Filter

For a comprehensive description probabilistic estimators, the Kalman Filter and the Extended
Kalman Filter (EKF), refer to appendix A. The current section merely defines the specific nota-
tion used in this thesis.

Table 1: State types

true state x

nominal state x̂

error x̃

Table 1 defines the notation of the different state types of the EKF.
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We describe the relationship between the error state and the true state as

true state = nominal state + error

where the nominal state is an estimation of the true state. For completeness, here is the full
EKF propagation step, followed by the notation definition:

x̂k+1 = f(x̂k,u)

Pk+1 =FkPkF>k + Qk

and the update step:

rk = zk − h(x̂k)

Kk = PkH
>
(
HkPkH

>
k + Rk

)−1

x̂k+1 = Kkrk

Pk = (I−KkHk) Pk

The function f(·) is the prediction function operating on the current state estimation and the
prediction input. The linearization of this function is the Jaocobian matrix F. The vector u is the
prediction input. Q is an approximation of the process noise. During each prediction, the state
estimation x̂ is changed, along with the covariance P around this state. The current timestep is
represented by the index k. Note that these matrices can be different in each time-step.
h(·) remaps the current state estimation into the expected measurements. The respective

linearized Jacobians are F and H. During the update step, the measurement information in the
vector z is used. The residual vector is written as r. A note regarding error accumulation: If
a state is observable, such as the rotation about the x- and y-axis of the IMU, then the error
is bounded. If the error is not observable, such as the z-axis rotation, then the error can grow
without bounds. Linearizing the residual to receive the Jacobian H is done as follows:

r = z− ẑ + n (5)

= h(x)− h(x̂) + n

using first-order Taylor approximation results to:

r ' Hxx̃ + n (6)

where Hx is the Jacobian of the function h() with respect to x.
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2.4 Error-State Kalman Filter

The true state vector in a Kalman Filter is a composition of the nominal state - the estimation of
the true state - and the error between the truth and the estimation.

xt = x̂⊕ δx

where ⊕ is a general compounding operator.

The Extended Kalman Filter propagates the estimated state through a nonlinear function f(·)
and propagates the covariance matrix of this state’s error through linearization of said function.
In contrast, the indirect - or Error-state Kalman Filter (ESKF) linearizes a description of the
error-state propagation and uses this linearization to transform the covariance matrix. Note,
that the estimated error state is always zero in the prediction step, but the covariance grows
with each prediction iteration. Only through a measurement update are the accumulated errors
in the error state rendered observable. After calculating the error based on the received obser-
vations, these errors are added to the estimations in the state vector to correct the prediction.
Through this step, the state estimation, which has been accumulating errors during each prop-
agation in the prediction step, is rectified using the observation of these errors. The assumption
of a zero-mean estimation of the error state for the prediction step is valid again until the next
measurement update.

Using the error state as the point of linearization yields two major benefits: The linearization
error becomes smaller and the usage of quaternions as a rotation representation can be super-
seded by their small-angle approximation as the following two paragraphs explain.

Linearizing non-linear functions, such as rotation propagation, intrinsically decreases the ac-
curacy of the result. Smaller rotations have less loss of accuracy through eg. Taylor lineariza-
tion, because the size of the terms following the first-order expression decreases exponentially
with the size of the term. The change of the error in the estimated rotation is expected to be
smaller than the change in rotation itself - therefore, the linearization of the error state results
in a more accurate propagation than a linearization of the state propagation.

In the case of the MSCKF, rotational information is saved via quaternion representation. This
choice makes the states rotation immune to parameter singularity - which can happen with
a minimal representation. However, this redundant information may constrain the covariance
matrix into becoming a singular matrix. The error state uses a minimal representation because
the expected field of operation is so small, that no parameter singularity is expected to occur.
This minimal representation lifts any possible constraints on the covariance matrix.
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The following is a mathematical formulation of the Error-state Kalman Filter in comparison to
a regular EKF. Refer to section 2.3 for the nomenclature used throughout this following section.

Extended Kalman Filter Error-State Kalman Filter
Prediction Model: Prediction Model:

x = f1(x,u,n) (7)

x̂ = f2(x̂,u) (8)

x = f(x,u,n) δx = f2(x, δx,u,n) (9)

Prediction: Prediction:

x̂ = f(x̂,u) δx̂ = f2(x̂, δx̂,u) = 0 (10)

P←− F P F> + Q P←− Fδx P F>δx + Fn Q F>n (11)

Correction: Correction:

K = PH>(HPH> + R)−1 K = PH>(HPH> + R)−1 (12)

x̂ = x̂ + K(z− h(x̂)) δx̂ = K(z− h(x̂)) (13)

x̂ = x̂⊕ δx̂ (14)

P = (I−KH)P P = (I−KH)P (15)

Eq. 7-8 split the state estimation into the error-state estimation function. The predicted error
state is always 0 (as in eq. 9) as the mean estimated error is zero until a measurement occurs.
Linearizing the error state process model around zero yields a Jacobian matrix F, which is used
to propagate the error-state covariance matrix (eq. 10). Through a measurement update, the
Kalman gain can be calculated to minimize the covariance entries (eq. 11). Note, that the Jakobi
matrix H in eq. 12 and 15 is the measurement function derived in concerning the error-state
description. Eq. 14 adds the observed error to the actual state vector and eq. 15 updates the
covariance matrix of the error state.

3 Related Literature on Position Estimation

There exists a vast amount of work regarding position estimation. This chapter will focus on
the progress in the field of combining visual and inertial measurements. First, we will gen-
erally describe the different possible approaches, subsequently detailing the most advanced
implementations and their individual advantages and shortcomings.
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3.1 Odometry and Maps

In literature, ordinarily, three types of methods for position estimation are recognized [23, 24]

• ’A Priori’ map

• Simultaneous Localization and Mapping (SLAM) as well as

• Dead Reckoning or Odometry.

Map SLAM Odometry

Figure 1: Visual comparison of A Priori map, SLAM and Odometry

Figure 1 shows a visual comparison between the three different strategies. The ’a priori’ map
has all the information used for localization beforehand. SLAM self-generates the necessary
information and saves it for later re-localization. Dead reckoning only uses information from its
immediate past to estimate its movements. The next paragraphs will outline these three ap-
proaches.

The ’a priori’ method requires an existing map. The information in this map is used by an
agent to localize itself within it. This map can be a feature map [25], visual markers, or any
conceivable other static external information, which the agent can measure and orient itself
through. Some approaches use a more high-level representation of the environment, for exam-
ple, an occupancy grid [26] and blueprints of the location [27]. Common approaches for this
type of localization are based on different types of the Markov Localization, using probability
functions to describe the location estimation of the agent [28]. The Monte-Carlo Localization
[29, 30] is one such algorithm. It is sampling-based, with an arbitrary variability between esti-
mation accuracy vs. computational cost.
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Simultaneous localization and mapping (SLAM) based methods generate a map of the sur-
roundings, while simultaneously estimating the agents’ position in this map. There exists a
considerable body of literature regarding this topic. This section will only provide a brief de-
scription of some key concepts and a starting point for further research. It is suggested, that
the hippocampus of rats use a form of SLAM, combining odometric information with landmarks
[31]. This model of the hippocampus forms the basic concept of RatSLAM [32]. Autonomous
driving systems are increasingly focused on using SLAM algorithms since the robot Stanley
won the DARPA autonomous driving challenge in 2005 [33]. Recent approaches have shown
tremendous advancements since then, partially assisted by the steady increase in computa-
tional power which makes more resource-heavy approaches feasible. Common extrinsic sen-
sors for SLAM are laser scanners [19, 34], depth cameras, [15, 35, 36] and regular mono- or
stereo-cameras [36, 37]. The company Waymo describes their usage of these sensors in their
whitepaper [38] concerning an autonomous car, similar to Sun et al. in their recent paper [19].
Small mobile robots with a payload and price limit rely on visual sensors (and sometimes inertial
measurements). Huletski et al. provide an overview of open-source visual SLAM implementa-
tions up until 2015 [39]. Alternative approaches to feature-based estimators are direct SLAM
[37, 40] and SLAM based on other descriptors such as lines and scene geometry [41, 42]. The
main challenge of these algorithms for mobile robots and AR devices is reducing the computa-
tion requirements to allow real-time information processing.

Dead reckoning forsakes the concept of a map entirely, accumulating estimated incremental
changes in the position [7, 12]. The most straightforward odometry for land-based robots uses
wheel encoders and an underlying motion model to estimate the position change of the robot
[12]. This change is then integrated over time. The error in the position estimation grows
continuously, without any global reference information the agent can return to. The increase
in computational efficiency and the high degree of accuracy of these incremental estimations
have allowed odometry to become a viable tool for mobile robots. Examples for dead reckoning
strategies are IMU-based integration [43], flow of radial laser scans [44] and most prominently,
visual (inertial) odometry, which will dominate the remainder of this chapter.

3.2 Visual and Inertial Sensor Fusion

Visual odometry (VO) uses image sequences to estimate the camera’s motion. This set of
algorithms can use mono- or stereo-camera setups. Mono cameras have no inherent scale
information, which is compensated for, either with an additional sensor or by supplying scale
information via markers of a defined size. Stereo-cameras contain intrinsic information of scale
through the known distance between the two cameras. Visual odometry, regardless of the
number of cameras it uses, must extract information from the image frames it receives. Such an
algorithm can either operate on individual image geometries (eg. feature points) or optical flow
techniques (matching intensity values between the entire images, or selected image patches)
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see chapter 3.3. To restitute scale information from monocular camera-based motion, visual-
inertial odometry (VIO) adds the information of an inertial measurement unit to the estimation
process. This additional IMU data is commonly used in stereo based visual odometry systems
and has been shown to greatly increase filter robustness while maintaining equivalent efficiency
[45].

Recall, that odometry is different from simultaneous localization and mapping (SLAM) in the
regard, that SLAM approaches save past information such as keypoints. This allows a SLAM
to constantly re-evaluate the current position estimate using past experiences. It, therefore,
has the advantage of loop-closure, when revisiting a saved keypoint. VIO has no such loop-
closure, as its estimation is only based on the current sensor information and state, disregarding
any past information. This inherent limitation of VIO systems, while reducing their long-term
accuracy, allows them to run on less resource-hungry devices. Expanding on this concept
of VIO, several recent implementations use the concept of a sliding window, saving a bound
number of past frames or features and using the combined information, thereby increasing the
accuracy of the estimation.

3.3 Visual Inertial Odometry

This section contains an executive overview of various vision-based position estimation
pipelines dealing with the most prominent examples of vision-based pose estimators. We will
first distinguish between some general concepts, that differentiate the different algorithms. Sub-
sequently, notable examples of position estimation algorithms are summarized. These include
OKVIS [46], ROVIO [47, 48], VINS [49], SVO [50, 51] + MSF [52], Trifo-VIO [53] as well as
a description of the MSCKF [20]. The MSCKF algorithm will be concisely described as well.
Chapter 4 will deal with the mathematics behind the MSCKF approach in significant detail.

First, let us distinguish between loosely and tightly coupled sensor fusion as the terminology
is used in multiple papers [46, 47, 50, 52, 53, 54, 55]. Loosely coupled means, that the infor-
mation from both sensors is treated independently from one another. A sensor, including its
processing system, can be easily swapped out for another system with the same output. For
example, one might merge the estimated pose from a GPS module with the estimated pose
based on a laser-scanner. Any of the two could be swapped out for a different pose estimation
system, as long as the output is equal. Tightly coupled fusion, on the other hand, uses the
correlation between the internal states of the systems to generate a consolidated estimation of
both sensors. This has the potential of generating a far more accurate estimate, depending on
how interwoven the sensor outputs are [54]. Additionally, the need for sensor information ab-
straction is reduced - eg. feature position measurements from cameras or GPS pseudo-ranges
can be used directly in the estimation. This, in turn, reduces the calculatory overhead. For
these reasons, the following estimators, with the exception of MSF, all tightly couple sensor
outputs with one another.
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In the estimation procedure itself, we discriminate between optimization-based - and filter-
based position estimation. Filters typically use some version of an Extended Kalman Filter to
minimize the covariance, while optimization-based approaches minimize a cost function based
on some calculated residual. The MSCKF is one such example of a filter based approach
[20, 45], OKVIS [46] is a VIO which uses optimization.

Filter based systems accumulate inaccuracies through linearization errors. Observability con-
sistent EKF, as proposed in [55], use the first estimation of a state to construct the respective
Jacobians, outperforming filters, that linearize at the current state. The Unscented Kalman Filter
[56] samples points around the mean which are then propagated through the underlying non-
linear function. This results in a more accurate mean and covariance estimation. Nonetheless,
filter-based approaches are restrained by their Markovian design and reliance on a lineariza-
tion step. The optimization-based approach is not bound by this Markov assumption. Bundle
Adjustment is the term used to describe the optimization over multiple layers of measurements
[57]. This correction regarding a large buffer of information makes the resulting estimation
more accurate than a filter, and the calculations more taxing on the computing system. Efficient
optimization-based estimators use sliding windows [58, 46, 49, 59] and calculate a marginalized
’prior’ factor, with condensed information from all states outside the sliding window [49, 59].

Feature based Direct Semi-Direct

Figure 2: Difference between feature based, direct and semi-direct approach to frame comparison

A final major separation can be drawn between direct, semi-direct and indirect approaches
regarding camera information. Indirect - feature-based - approaches extract some abstract
feature description from the received image (eg. FAST Features [60], SIFT Features [61]). Di-
rect approaches [37, 40] use the pixel values of two images directly, to estimate the relative
movement between them. Semi-direct approaches use patches, typically based around image
features, and estimate the relative change in position for these individual patches. The photo-
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metric MSCKF [62] and ROVIO [47] are based on such an approach. Figure 2 visualizes these
three approaches.

Figure 3 shows a summarized visualization of the main differences between the various al-
gorithms presented in the following paragraphs. Note how algorithms utilize past information
differently and extract image information in various ways.

OKVIS MSCKFROVIO

Frame Feature 
Key FeatureKey Frame

Multi-Level Patch

Update Feature
Patch around Feature

SVO

Figure 3: Visualization of four prime examples of VIO algorithms

OKVIS [46] uses an optimization approach to minimize the reprojection error of features be-
tween keyframes in a visual SLAM. The algorithm from the paper by Leutenegger et al. tightly
integrates IMU data into a visual SLAM. This SLAM operates on key camera frames, which
it selects based on the degree of novel information in the camera frames. If the number of
frames surpasses the maximum limit of the sliding window of camera frames, non-key frames
are rationalized. With every new feature measurement, a cost function containing the weighted
reprojection errors concerning all feature measurements and the IMU error (based on the initial
IMU estimation and the corrected IMU state) is minimized. OKVIS was conceived to operate
on stereo-camera information. VINS [49] is algorithmically similar to OKVIS and advances the
concept with full loop-closure and pre-integrates the inertial measurements for the cost func-
tion.

ROVIO [47, 48] is an Extended Kalman Filter, minimizing photometric multi-level patches of
monocular image frames. The state includes the IMU pose information, as well as vectors to
the currently tracked features. Inertial measurements are used for state propagation. The state
correction proceeds any time a new image is committed by the camera. Newly extracted fea-
tures are added to the state vector. For any existing feature that should be visible in the frame,
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an intensity error is computed using the expected patch position in the frame and is used as
innovation term to correct the accumulated errors of the propagation.

Semi-Direct Visual Odometry (SVO) [50, 51] directly uses the pixel values of a monocular
camera to estimate its position. OKVIS and the MSCKF extract features from an image and
use these features movements to estimate any position change. By contrast, the pose change
between successive images in the SVO algorithm is determined by minimizing the photometric
error of patches between frames - directly utilizing pixel-intensity values. The pipeline builds a
map of feature points from selected keyframes, which are then used to project these patches
used for the cost function. The accuracy of the features’ position in space is incrementally in-
creased with every measurement.

The Multi-State Constraint Kalman Filter (MSCKF) is an Extended Kalman Filter based po-
sition estimator, merging IMU data and the movements of detected features within a sliding
window of camera images. The algorithm uses the movement of a measured feature and com-
pares this measured movement to the expected movement based on the IMU propagation. The
error between expectation and measurement is then used to correct the prediction. See chapter
4 for an in-depth explanation of this algorithm.

Trifo-VIO [53] extracts feature points and lines from the images of a stereo-camera setup.
Additionally using line features to estimate the position increases accuracy in low-texture envi-
ronments. The estimation process is based on the MSCKF algorithm using a sliding window for
position estimation. In addition to line-based feature extraction, the paper presents a loop clos-
ing procedure using the Extended Kalman Filter itself. This is done by injecting the previously
estimated feature position of a keypoint feature back into the update step instead of calculating
a new one. This results in the update step nudging back the position estimate to the original
estimated feature position.

MSF is a generic Multi-Sensor Fusion Extended Kalman Filter framework [52] for state esti-
mation. The algorithm loosely couples an unlimited number of sensor information and handles
losing and newly receiving sensor signals over time. The framework supports delayed updates
and uses an iterated EKF [63] which recursively optimizes the linearization point to reduce lin-
earization error. The state prediction is based on IMU measurements - the same prediction
implementation is used by the MSCKF, see chapter 4 for details. On top of this buffer (timeline)
of state predictions, any measurement can be applied to any state in the buffer. The subsequent
states after this edited state are repropagated and any measurements committed to a state af-
ter the updated state are reused for an update of this new prediction. The MSF framework is
designed to be highly modular and additional sensors may be integrated easily.
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A paper by Jung et al. [64] was released during the evaluation period of this thesis, which
presents their algorithm design for a photometric visual odometry pose estimator using stereo
images. The Schmidt-EKF, based on the MSCKF by Geneva et al. [65] is a keyframe aided
resource considerate visual-inertial SLAM and was similarly released well after the research
phase of this thesis. We chose not to retroactively evaluate their implementations but wish to
nevertheless take note of them here, to provide a more complete picture of the current literature.

3.4 Visual Inertial Odometry Comparison

This section compares the advantages of the different approaches and underlines these differ-
ences based on the individual papers and the in-depth comparisons of some of the estimation
approaches of Delmerico and Scaramuzza [66] and Huletski et al. [39]. Estimation accuracy
and computational efficiency are the two main parameters in this comparison. Note, that all
algorithms in this section are among the top-performing vision-based estimators.

The paper of Delmerico and Scaramuzza [66] compares some of the listed algorithms re-
garding their CPU performance, memory usage, and root mean square error (RMSE) accuracy.
Note, that non-inertial based algorithms such as LSD-SLAM [67] and ORB-SLAM2 [36] and
stereo-camera based algorithms such as Trifo-VIO [53] and the stereo MSCKF [45] are not
evaluated in the paper. We will therefore directly use the evaluation results of the respective
papers to compare the algorithms to one-another.

From the listed algorithms, similarly small root mean square errors (RMSE) in the EuRoC
Dataset [68] are reported by OKVIS, Trifo-VIO, the stereo MSCKF, and ROVIO. The VINS
algorithm takes the lead with consistently accurate performance in all tests, although Zheng
et al. [53] note, that heavy rotation is detrimental to the initialization phase of the algorithm,
with OKVIS having similar problems in these situations. This was especially noticeable in the
Trifo dataset [53] which uses an industrial robot to move the camera. Trifo-VIO and the stereo
MSCKF seemed to produce competitive results in these rotation heavy datasets.

Trifo-VIO does not present the CPU load of their algorithm during a performance run. ROVIO
takes the lead for the most resource-efficient estimator. The stereo MSCKF is also among the
more resource-friendly implementations according to the tests of Sun et al. [45], where it is
slightly less efficient than ROVIO and more efficient than VINS Mono and OKVIS. Another re-
source efficient algorithm is a combination of SVO and inertial data using MSF [69] but ranks
on the lower end accuracy wise. VINS and OKVIS seem to be the most resource-hungry esti-
mators analyzed.

Between the two most efficient algorithms: ROVIO and the stereo MSCKF, the stereo MSCKF
shows slight superiority in performance, while ROVIO is less computationally demanding. Both
algorithms have an open source implementation (ROVIO [70], MSCKF [71]).
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4 MSCKF Analysis

The following chapter is an extensive analysis of the mechanics utilized by the MSCKF pre-
sented by Mourikis et al. [20] and the Sun et al. [45] implementation. We will first give a brief
summary of the algorithm and follow up with the structure of the remaining chapter. After pre-
senting the MSCKF pipeline in detail, the stereo-camera expansion is derived. An understand-
ing of the mechanics of the MSCKF is necessary in order to follow the anchor-frame MSCKF
and the photometric expansion in the subsequent chapters.

4.1 Overview

This section first gives a summary of how the MSCKF works conceptually. Then, the structure of
the implementation is presented. The section arrangement for the rest of the MSCKF analysis
chapter is derived from this structure.

4.1.1 Summary

The MSCKF is an Extended Kalman Filter based approach, which is separated into a predic-
tion step and an update step. The prediction step utilizes the information gathered from the
IMU to form an estimate of the sensor’s current position. The correction step, or measurement
update, uses feature movements detected by the camera in a moving window of camera frames
to correct this estimated position. Figure 4 shows this process sketched out in four steps. The
camera frames visualized in step number one are separated temporally as well as spatially.
Every time a camera image is received, the IMU information is used to estimate the position
of the camera. These camera images are then saved for a period of time, see figure 5. This
process is denominated a moving window of images.

Features in the images are tracked through this moving window of camera frames. Once
a feature is no longer tracked (step number 2), this feature is used to correct the movement
estimation between the frames. Based on this IMU estimation, the true position of the feature
is estimated in step number 3. Finally, the difference between the true measurements of the
feature are compared to where the feature should have been measured based on the estimation
of the feature position (step number four). This error in measurement and estimation is then
used to update the prediction.
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Figure 4: Prediction and update process sketch of the MSCKF split into four steps: tracking, initiating an
update, estimating and updating the prediction
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Moving window of camera frames

Figure 5: A moving window, saving the past few frames to be used for an update step

4.1.2 Structure

For efficiency purposes, the MSCKF implementation of Sun et al. [45] is split into two main
parts, which we will call the feature extractor and the MSCKF algorithm. Figure 6 shows these
two components, as well as the main individual elements within the MSCKF algorithm.

IMU DataCamera Data

Feature

IMU Propagation

State Augmentation

Update

M
ap

Feature Extractor

MSCKF Aglorithm

Figure 6: The building blocks of the MSCKF - feature extractor and algorithm - as well as data sources

The following sections will first present the notation used for the MSCKF. Further, the data
structure within the algorithm is presented, including the state vector and the ’external’ map, in
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which the feature information is saved. The IMU data processing will be derived, through which
we predict the movement of the camera. The camera position is saved in the state-vector - this
state-vector augmentation is explained as well. The update step uses the entire information of
a feature to correct the error of the IMU propagation. This correction step is the final building
block needed for the MSCKF algorithm. Thereafter, we will give an overview of the feature
extraction and matching process in the ’Feature Extractor’ of figure 6, designed by Sun et al.
[45].

4.2 Frames and Definitions

All the reference frames used in this thesis are presented in table 2.

Table 2: Frames used in this work

Ground frame {G}
IMU frame {I}
Camera frame {C}

The Ground frame is considered the reference frame for the IMU frame; the camera frame is
linked to the IMU frame, see figure 7 for reference.

Camera Frame

IMU Frame

Ground Frame

Figure 7: Relative frame position visualized through coordinate systems and arrows

The temporal arrangement of frames and variables are shown through an index character in
the post-subscript position, eg. {I}k which is the IMU frame at time-step k. The frame associ-
ated with a variable is generally noted as a pre-superscript, for example, Gf is a feature from
the viewing point of the Ground frame {G}; these pre-superscripts are sometimes omitted in
favor of shorthand notation to increase readability - though such a substitution will preemptively
be defined in the text.
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Rotations between frames are represented either in their quaternion form q, a rotation matrix
R or the three-dimensional minimal representation θ vector. The forms in table 3 all represent
a rotation from Ground frame orientation {G} into the IMU frame orientation {I}. The function
C(·) generates the equivalent rotation matrix R from a quaternion q, as defined in eq. 2.

Table 3: Rotation from Ground frame to IMU frame

quaternion formulation I
Gq

rotation matrix IRG

minimal representation IθG

C(IGq) = IRG , q =

1
2
IΘG

1

 (16)

where eq. 16 is the small-angle representation of a quaternion (see eq. 3).

4.3 Data Representation

Conventional EKF implementations save all information used to estimate the robot’s state inside
the state vector. The MSCKF follows a unique strategy, where only a part of this information
is represented in the state vector. While the pose information is saved in the state, the feature
information is saved externally. This collection of feature information will be referenced to as
a map. Details how this data dependency is handled within the Kalman Filter will follow. To
compute the Error-state Kalman Filter, a description of the error state is necessary and will be
formulated in this section.

4.3.1 State Vector and Map

The MSCKFs state vector consists of an IMU state xIMU and multiple camera states xCn :

x = [ x>IMU x>C1
x>C2

... x>Cn
]> (17)

where n represents the number of camera frames currently in the state vector.

The information in the IMU state vector xIMU varies between MSCKF implementations.
Mourikis et al. [20] use a minimum viable description consisting only of the pose, the veloc-
ity, and biases; Sun et al. [45] expand this by estimating the extrinsic parameters of the sensor
setup - the relative pose of the camera regarding the IMU frames. Other implementations add
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additional IMU calibration components [72].

XIMU = [ IGq
> b>g

Gv>I
I
Cb> Gp>I

I
Cq
> Ip>C ]>

With the elements in the vector corresponding to

rotation from {G} to {I} I
Gq

bias of the gyroscope bg

velocity of {I} in {G} GvI

bias of the accelerometer ba

position of {I} in {G} GpI

rotation from {I} into {C} I
Cq
>

position of {C} in {I} IpC

The camera state XCn consists of a quaternion and a position vector representing the orien-
tation and position of the camera at the time the camera frame was recorded:

XCi
= [ CGq

> Gp>C ]>

Another MSCKF implementation [62] uses a description of the IMU state for the camera state
instead of transforming the current IMU state into the camera state. Remember, that only the
pose of the camera is recorded in the Kalman Filters state vector; no feature information is
present in the state. This feature information is instead saved in a data array external to the
Filter. This means, that the feature information needs no covariance assigned, but cannot be
used to calculate the residual, see chapter 2.3 - this distinction will become important when
formulating the update step of the filter. Figure 8 visualizes the data structure of the MSCKF. It
shows the two sources of information (IMU and camera) and the data structures used to save
them (map and state vector). Incoming IMU data is directly used to predict the current position
based on the information in the state vector. This position estimation is saved in the IMU state.
Every time the camera receives a frame, an estimation of the position from where this image
was taken is added to the state vector in form of a camera state (using the prediction of the IMU)
as shown in the state vector in figure 8 as the grey dotted frame F7. Existing features observed
in this camera image are added as observations to the existing features (meaning, the u and
v of the feature in the respective image are saved). These observations are represented as
grey dotted squares in the map. Feature observations that do not fit to any existing features
are added as new feature observations to the map. These are the two grey dotted L-shapes
underneath the rest of the features in the map.
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Figure 8: Data storage in the MSCKF - the IMU data is used in the prediction of the current position.
This position is used for each camera frame position. Feature observations in camera frames
are added to the respective feature.

The map, therefore, saves multiple features, each with a list of measurements u and v re-
garding a certain camera frame where the feature was seen. The measurement of a feature
from one camera frame is described as z:

z =

u0

v0

 . (18)

These observations saved in the feature, directly link to the camera states in the state vector
itself. This is represented by the corresponding shades of blue in figure 8. The IMU state
and the camera states in the state vector are a best guess as to where the agent is currently
positioned and as to where the observations in the feature map were measured from.
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4.3.2 Error-State Vector

Recall now, that the MSCKF is based on the Error-state Kalman Filter as described in chapter
2.4. We will, therefore, need a description of the error-state vector:

x̃ = [ x̃>IMU x̃>C1
x̃>C2

... x̃>Cn
]>.

The IMU state is the vector

x̃IMU = [ δIGθ
> b̃>g

Gṽ>I
I
C b̃> Gp̃>I δ

I
Cθ
> I p̃>C ]>. (19)

This description of the error state is, for the most part, straightforward. The error state is
equal to the difference between the true state and the nominal state. We define the general
composite parameter ⊕ to describe the relation between the state types

x = x̂⊕ x̃.

This composite of the nominal and the error state can be exemplified by the position vector and
the rotation quaternion:

p = p̂ + p̃ (20)

q = δq ⊗ q̂. (21)

For the position vector p, the error state is simply p̃ = p− p̂. To eliminate constraints on the
covariance matrix, we want the orientation error q̃ ≡ δq to have a minimal representation, which
we achieve through the small-angle approximation of the quaternion (eq. 3). This approximation
can be used, as the small-angle assumption holds for the error-state estimation.

4.3.3 Control Vector

The necessary input to propagate the estimated state (eq. 8) through propagating the error -
state (eq. 9) is typically called the control vector u. The prediction in the MSCKF is based on
IMU measurements, which define the vector’s description

u =

ωm
am


with ωm as the angular velocity measurements of the gyroscope and am as the acceleration
measurements of the accelerometer.
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4.3.4 Noise Vector

Remember, that noise in the EKF construct must always have a mean of zero - therefore,
these values are generally omitted or ignored in the state estimation formulation. These noise
values nonetheless influence the covariance matrix. The IMU noise values are labeled as n =

[ng nwg na nwa] which are the gyroscope noise, the gyroscope bias noise, the accelerometer
noise and the accelerometer bias noise respectively. Refer to appendix C for more details on
IMU noise.

4.4 IMU Propagation

This part of the algorithm uses the accelerometer and gyroscopic data from the IMU sensor
(see appendix C) to predict the movement of the agent. We will derive the continuous-time
process model based on an error-state description. This reformulation into a valid error state
will take up the majority of the section. The resulting process model is then integrated into
discrete-time.

4.4.1 Continuous-Time Process Model

Following the definition of the state vector and error-state vector, a continuous-time process
model is derived for both, which will subsequently allow us to describe the discrete-time state
transition functions eq. 8 and eq. 9. This section parallels the process model derivation in [22],
where a general IMU process model is derived for an Error-state Kalman Filter. Note that this
chapter neglects the influence of the earth’s rotation on the IMU [20] and uses ijk quaternion
nomenclature, see chapter 2.2.

We aim to describe the state dynamics as a function vector based on the current state and
the received measurements, a continuous-time description of eq. 7:

ẋ = f(x,u).

This function vector will be stated first, derivations, definitions and proofs follow. Note, that
this function assumes a simultaneous collection and receiving of the gyroscope and accelerom-
eter information, as both data are processed conjointly. The elements in the vector correspond
to
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ẋ = f(x,u,n) (22)

I
Gq̇ =

1

2
[ωm − bw − ng]L · IGq (a)

ḃg = nwg (b)
Gv̇I = C(IGq) · (am − ba − na) + Gg (c)

ḃa = nwa (d)
GṗI = Gv (e)
I
C q̇ = 03x1 (f)

I ṗC = 03x1 (g)

Eq. 22b-22g are straightforward. The function C(·) in eq. 22c transforms the quaternion into a
rotation matrix, as described in appendix 2.2. The derivation of eq. 22a uses the quaternion
rotation matrix equivalency of eq. 1 in chapter 2.2. Visually interpreted this function transforms
the change in rotation ω into the current rotation I

Gq. Note that eq. 22a and eq. 22c subtract the
current biases b - and respective noise - from the sensor measurements.

The goal of the Error-state Kalman Filter is to have a noise-less description of the nominal
state - every uncertainty around the nominal state must be described by the error state. Ref-
erencing the description of the true state in eq. 22 we can easily describe the nominal state
without random disturbances from the noise vector n:

˙̂x = f(x,u) (23)

I
G

˙̂q =
1

2
[ωm − b̂w]L · IGq̂ (a)

˙̂
bg = 03x1 (b)

G ˙̂vI = C(IGq) · (am − ba) + Gg (c)
˙̂
ba = 03x1 (d)

G ˙̂pI = Gv (e)
I
C

˙̂q = 03x1 (f)
I ˙̂pC = 03x1 (g)

Note, that this model is the continuous-time description of the error-state equation (eq. 8). In
the following chapter 4.4.2 we will integrate these equations into their necessary discrete-time
formulation.

The change in the error state vector from eq. 19 can then be approximated by using the
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inverse of the composition operator which will be described as ⊕−1 ≡ 	 and using eq. 22 and
eq. 23:

x̃ = x	 x̂.

This results in the following linear equations (eq. 24).

˙̃xIMU = fe(x, δx,u,n) (24)

δ IGθ̇ = −[ωm − b̂w]× · δIGθ − ω̃b − nw (a)
˙̃
bg = nwg (b)

G ˙̃vI = −C(IGq) (am − ba) δ
I
Gθ̇ − C(IGq)b̃w − na (c)

I
C

˙̃
b = nwa (d)

G ˙̃pI = Gṽ (e)

δ IC θ̇ = 03x1 (f)
I ˙̃pC = 03x1 (g)

Eq. 24b and eq. 24d are simply the transference of the random walk noise of the bias into the
change of the bias. Eq. 24f and eq. 24g show that these rotation and translation parameters
between {I} and {C} are considered static. In 24e, the term Gṽ is the result of the integration
of the continuous changes in eq. 24c. Eq. 24a and eq. 24b are subsequently expanded on. Be-
fore presenting the derivation of these equations, the next paragraph will give a visual analysis
of the resulting error terminology.

Compare first the error description of orientation and velocity to the true state description in
eq. 22a and 22c to see, that the resulting terms reduce the measured values. Further, note that
the noise terms nw, na are removed from any rotation in the formulae. As the noise covariance
is considered to be spherical, i.e. uniform in all directions, changes in rotation do not change
the result. This only holds true, when the gyroscope and the accelerometer noise values are
equivalent in all axis.

Looking at eq. 24a, the expression −[ωm − bw]× · δIGθ describes the error in the measured
rotation based on the accumulated error so far; in the next term, b̃w is the error in the bias.
Note, that any errors multiplied by errors are neglected, such as the error resulting from the
error in the rotation due to the error in the bias. A similar analysis can be made for eq. 24c.
The first term describes the resulting error in the acceleration vector due to the estimated error
in rotation, the second term is the error in the bias. Both are rotated into the current nominal
rotation of the IMU. Again, all terms describing the coupling of errors are neglected.

Sola et al. [22] provide an elegant description of the derivation regarding the rotation and
velocity error, which are outlined in the following sections.
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Rotation error derivation

This derivation partitions all the elements of uncertainty into one term. It uses the definitions
of the true rotation time-derivative using the angular rate and the time-derivative of the com-
pounded estimated rotation and the error rotation, to subsequently isolate the small-angle ap-
proximation of the error rotation.

By partitioning the true change in rotation into

ω = ω̂ + δω

and by grouping elements with a covariance together

ω̂ , ωm − b̂w (25)

δω , −b̃w − nw (26)

we can write the true and estimated change in rotation as a function of these terms:

d

dt
(q̂ ⊗ δq) = q̇ =

1

2
q ⊗ ω

where we simplify q ≡ I
Gq to ease readability. The right-hand calculations are the time deriva-

tives of quaternions, see eq. 4. Using the definition of the true quaternion composition from eq.
20, this can be distributed and derived into both

˙̂q ⊗ δq + q̂ ⊗ δ̇q = q̇ =
1

2
q̂ ⊗ δq ⊗ ωt

1

2
q̂ ⊗ ω ⊗ δq + q̂ ⊗ δ̇q = q̇ =

1

2
q̂ ⊗ δq ⊗ ωt

isolating δq and writing it in its small-angle form, we receive 0

δθ

 = δq ⊗ ωt − ω ⊗ δq

where only the vector part δθ is of interest. Using the matrix quaternion representation from eq.
1 and dispersing the parameters from eq. 25, the final error description is

˙δθ = − [ωm − ωb]× δθ − δωb − ωn .

Linear velocity error derivation

Parallel to the error in rotation derived in the previous section, Sola et al. [22] provide a similar
calculation for the linear velocity error. As with the rotation error derivation, the ijk notation is
used for quaternions in the following derivation.
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Again we separate the elements with covariance by defining

a , am − ba

δa , −δba − na
(27)

which we use to describe the true acceleration

a = R (a + δa) + g + δg (28)

where R can be separated into

R = (I + [δθ]×) R̂ +O
(
‖δθ‖2

)
. (29)

Here we can marginalize the higher order error terms in O (·). Parallel to the rotation error, the
v̇ term is split into two descriptions

v̇ + δv̇ = v̇ = (I + [δθ]×) R (a + δa) + g + δg

Ra + g + δv̇ = v̇ = Ra+Rδa + R[δθ]×a + R[δθ]×δa + g + δg

which can be rearranged and - through marginalization of second order terms - reduces to

δv̇ = R
(
δa− [a]× δθ

)
+ δg

δv̇ = −R [am − ba]× δθ −Rδba + δg − na . (30)

We here assume, that the covariance of na is a sphere, which allows us to write Rna as na.
Eq. 30 is the resulting velocity error, which has been used in eq. 24c.

4.4.2 Discrete-Time Prediction from IMU

The resulting motion models from the previous section are a continuous-time description. We
will first define the discretization for the nominal state description, and subsequently the error
state transition.

To integrate the function
˙̂x = f(t,x,u)

over a time ∆t, we write the form:

xk+1 = xk +

∫ (k+1)∆t

k∆t
f(τ,x(τ),u(τ))dτ.

This integration of the function f(·) can be approximated through various approaches. For ex-
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ample, Sun et al. [45] use a fourth order, Mourikis et al. [20] a fifth order Runge Kutta iterative
integration. As the time-steps between IMU samplings are expected to be sub 0.01s, these
estimations are considered accurate enough [22].

Calculating the discrete form of the differential equation

˙̃x = Fx̃ + Gn

is generally possible in closed-form, as Sola [22] provides. Nonetheless, to calculate the (error-)
state transition matrix Φ in the MSCKF, a numerical approach is used, due to its computational
superiority.

4.5 State Augmentation

The state description in eq. 17 contained multiple vectors xCi regarding the camera pose,
where i ranges from 1 to n, where n is the number of camera poses. As a new camera frame
is introduced to the MSCKF, the nominal state vector is expanded by a camera state xCn+1

at the end of the current state, using the current rotation quaternion and position vector from
the nominal state of the IMU, and transforming this information from {I} into {C} through the
corresponding current estimation.

xC` = [ CGq
> Gp>C` ]>

is defined by the functions

C
Gq =C

I q ⊗ I
Gq (31)

GpC =GpI + C(IGq)
> IpC . (32)

Additionally, the error-state covariance matrix needs to be expanded as well (with the nominal
state expansion, the error state naturally expands analogously). The result of this expansion
should be, that the current uncertainty of the IMU is directly linked to the uncertainty of the
newly added camera state. This is achieved through defining a Jacobian, which modulates the
IMU state into the current camera state

Pk ←− J Pk J>. (33)

Figure 9 visualizes the process. We therefore desire the Jacobi Matrix J to have the following
structure:

J =

I21×21 06n×6n

JC 06n×6

 (34)
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where we write the relevant term JC as

JC =
∂X̃Ci

∂X̃IMU

JC =

 C(CI q̂) 03×9 03×3 I3 03×3

[C(IGq̂)
IpC)]× 03×9 I3 03×3 I3

 . (35)
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Figure 9: The state vector as well as the state covariance matrix are expanded using the current IMU
state

To the best of our knowledge, no complete derivation of the state augmentation has been
published. For this reason the following section, will derive the part of the J matrix which re-
lates the position error in the IMU frame to the position error in C`. The derivation regarding
the orientation error is shown afterwards.

We calculate the position error description by first writing the description of the true position
state of the camera as a composite of the vectors in the true state:

GpC = GpI + C(IGq)
> IpC . (36)

Additionally, we recall the definition of the true state position and rotation description as a com-
posite of the nominal and the error state:

p = p̂ + p̃ (37)

q = δq ⊗ q̂. (38)
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Using these error definitions, we can expand eq. 36

Gp̂C + Gp̃C = Gp̂I + Gp̃IC(δIGq ⊗ I
Gq̂)
> (I p̂C + I p̃C) (39)

Gp̂I + C(IGq̂)
> I p̂C + Gp̃C = Gp̂I + Gp̃IC(δIGq ⊗ I

Gq̂)
> (I p̂C + I p̃C) (40)

removing Gp̂I from both sides, reduces to:

C(IGq̂)
> I p̂C + Gp̃C = Gp̃I + C(δIGq ⊗ I

Gq̂)
> (I p̂C + I p̃C)

where we can split up the quaternion based matrix using:

C(q ⊗ p)> = C((q ⊗ p)∗) = C(p∗ ⊗ q∗) = C(p∗)C(q∗) = C(p)>C(q)>

to get

C(IGq̂)
> I p̂C + Gp̃C = Gp̃I + C(IGq̂)

>C(δIGq)
> (I p̂C + I p̃C).

Distributing over the sum leads to

C(IGq̂)
> I p̂C + Gp̃C = Gp̃I + C(IGq̂)

>C(δIGq)
> I p̂C + C(IGq̂)

>C(δIGq)
> I p̃C

Gp̃C = Gp̃I + C(IGq̂)
>C(δIGq)

> I p̂C + C(IGq̂)
>C(δIGq)

> I p̃C − C(IGq̂)
> I p̂C .

(41)

We can use the following relation from [22]

C(q) = (q2
w − q>v qv)I + 2qvq

>
v + 2qw[qv]×

to simplify C(δIGq)
> under the assumption of small-angle quaternions and using the definition

of conjugate quaternions

C(δIGq)
> ' C(

1
2
I
GΘ̃

1

)> = C(

−1
2
I
GΘ̃

1

) =

= (12 − 1

2
I
GΘ̃>

1

2
I
GΘ̃)I + 2

1

2
I
GΘ̃

1

2
I
GΘ̃> − 2 · 1[

1

2
I
GΘ̃]×

where we marginalize any products of errors, resulting in

= (1− 0)I + 0 + [IGΘ̃]×

C(δIGq)
> ' I− [IGΘ̃]×.

This we inject back into eq. 41 and distribute over the second subtraction.
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Gp̃C = Gp̃I + C(IGq̂)
> (I− [IGΘ̃]×) I p̂C + C(IGq̂)

> (I− [IGΘ̃]×) I p̃C − C(IGq̂)
> I p̂C

= Gp̃I + C(IGq̂)
>C(δIGq)

> I p̂C + C(IGq̂)
> I p̃C − C(IGq̂)

> [IGΘ̃]×
I p̃C − C(IGq̂)

> I p̂C

which reduces to

= Gp̃I + C(IGq̂)
> (I− [IGΘ̃]×) I p̂C − C(IGq̂)

> [IGΘ̃]×
I p̃C .

Another distribution and the double-error marginalization C(IGq̂)
> [I p̃C ]×

I
GΘ̃ = 0 reduces the

calculation further. Using the cross-product matrix relation [a]xb = −[b]xa, we can write the
position error transformation as

Gp̃C = Gp̃I + C(IGq̂)
> [I p̃C ]×

I
GΘ̃ + C(IGq̂)

> I p̃C .

Now that we have a description of the position error transformation in J, the following calcu-
lations will show how to process the orientation from IMU to C frame.

C
Gq = C

I q ⊗ I
Gq = δq ⊗ q̂

These two descriptions of the rotation state can be split up into

δCGq ⊗ C
Gq̂ = (δCI q ⊗ C

I q̂)⊗ (δIGq ⊗ I
Gq̂)

δCGq ⊗ (CI q̂ ⊗ I
Gq̂) = (δCI q ⊗ C

I q̂)⊗ (δIGq ⊗ I
Gq̂).

Quaternion multiplying I
Gq̂
∗ and C

I q̂
∗ from the right as well as removing brackets due to associa-

tivity of quaternion multiplication leads to

δCGq ⊗ C
I q̂ = δCI q ⊗ C

I q̂ ⊗ δIGq

δCGq = δCI q ⊗ C
I q̂ ⊗ δIGq ⊗ C

I q̂
∗.

We subsequently simplify the error quaternion through a small-angle approximation:1
2
C
GδΘ

1

 =

−1
2
C
I δΘ

1

⊗ C
I q̂ ⊗

1
2
I
GδΘ

1

⊗ C
I q̂
∗.

Through two alternate quaternion descriptions

q ⊗ p⊗ q∗ =

−C(q)

0
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q = [v w] = v + w

we receive

1

2
δCGΘ + 1 =

1

2
C
I δΘ + 1 · C(CI q̂)

1

2
δIGΘ + 1.

Multiplying, gives us the description

1

2
C
GδΘ + 1 =

1

2
C
I δΘ C(CI q̂)

1

2
I
GδΘ + C(CI q̂)

1

2
I
GδΘ +

1

2
C
I δΘ + 1

which we reduce and marginalize the first term, which is an error multiplication

C
GδΘ = C(CI q̂)

I
GδΘ + C

I δΘ .

This is the error description used to calculate the previously introduced Jacobi.

4.6 Measurement Update

Propagating the IMU measurements accumulates unknown errors in the error state. The mea-
surements of a second sensor renders these errors observable. This error measurement can
then be used to correct the initial propagation estimation of the IMU, see eq. 9 - 13. The mea-
surement update in the MSCKF filter is based on observation of features. These features are
tracked over a period of time, in multiple camera frames. More specifically, the update process
is triggered, either, once the feature is no longer tracked, or the moving window of camera
states overflows, thereby removing a camera pose associated with features which were still
being tracked. Every time a new frame arives from the camera, the following steps are taken:

1. the current IMU position estimation is saved in the state vector as a new camera frame
(dotted gray elements in figure 10)

2. if one of either dependencies is fulfilled, a measurement update is triggered
(orange elements in figure 10)

• a feature is no longer tracked or

• a camera frame is removed from the current state.

Figure 10 shows a visualization of how some features are triggered for an update step. The
orange camera state is no longer inside the moving window. Therefore all features observed
in this frame are used as an update. This includes the top two features in the map (which are
also marked in orange). Additionally, two features are no longer observed in the newest frame
in the moving window. Both these features do not have a grey dotted camera state associated
with them. Both features are marked orange (one of them had already been selected through
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falling out of the moving window). A total of three features are therefore used to update the IMU
prediction.
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Figure 10: Update step in the MSCKF - all features observed in the camera frame removed from the
moving window and all features not observed in the new camera frame are used in the update

In the measurement update, the errors accumulated during the integration of the IMU motion
model are observed. This observation is done through comparing the estimated movement to
the movement of the tracked features. Every feature which is either lost or has been marginal-
ized by reducing the number of saved states, triggers the following steps in the update cycle:

1. the position of the feature is estimated based on its observations

2. based on this estimate, the expected measurements per camera frame are calculated

3. these results are compared to the true measurements and the residual is formed and

4. the residual is projected onto the nullspace of the feature-position Jakobi of the measure-
ment model, to alleviate any dependency outside the error-stat estimate.

For a general overview of the measurement update, refer back to fig. 4, where the feature
position estimation and the resulting residual through reprojection are portrayed.

4.6.1 Feature Position Estimation

The feature position in G is estimated using both the observations in the different camera
frames, and the estimated relative pose change between those frames. Mourikis et al. [20]
opted for a Gauss-Newton algorithm, Sun et al. [45] use the more robust Levenberg-Marquardt
solver; see Gill and Murray [73] for further details on the algorithms.
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The initial estimation for this depth value is calculated by using the first and the last of all
observations, see figure 18 and by constructing a least square problem:

p =
[
u v 1

]>
d

p′ = R
[
u′ v′ 1

]>
d− t

where p is the feature position in the anchor camera frame and p′ is the feature position in the
last camera frame. This can be reformulated into the feature observation in the second camera
frame, by dividing by the depth of p′, and by defining

m = R
[
u v 1

]

u′
v′

 =

m(0)d− t(0)

m(1)d− t(1)

 1

m(2)d− t(2)

=⇒

m(0)−m(2)u′

m(1)−m(2)v′

d =

t(0)− t(2)u′

t(1)− t(2)v′

 .
This resulting depth is then used as an initial estimation for the previously discussed algo-

rithms. The resulting feature position is a local minimum estimation of the feature position in
G.

4.6.2 Feature Reprojection

This estimated feature position from the previous section is based both on the IMU prediction
and the feature position estimation. To describe the difference between the measurements
and the prediction, we look at the projections of this estimated feature position in the individual
camera frames. To achieve this, first the feature position Gpf is transformed into the respective
camera frame C` and projected into the focal plane. The steps are visualized in figure 11, the
following calculations describe the process based on the pinhole camera model from chapter 2.

C p̂f = C(GC q̂)(
Gp̂f − Gp̂C) (42)

ẑ =

 û

v̂

 =


C x̂f
C ẑf
C ŷf
C ẑf

 (43)
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Figure 11: The feature position in the world frame is first estimated and then re-projected into the frames

4.6.3 Residual

The residual of the MSCKF is the difference between the position of the actual feature mea-
surement and this feature projection in the camera frame. The exact formulation can be written
as

ri,` = zi,` − ẑi,` (44)

where z is the original measurement of the feature in the frame, and ẑ is the reprojection of the
feature into the frame, as defined in eq. 18 and eq. 42 respectively. The i is the index of the
currently considered feature and the ` represents one of the frames, in which the feature was
observed in. An example of feature measurement and projection using the TUM VIO dataset
[74] can be seen in figure 12. Note, that this residual works, because the expected result of
accumulated measurements is the actual position of the feature. This is only true, because of
a Gaussian probability inherent in the IMU prediction and the measurement noise.

This residual is a function of the projection functions in eq. 42, which itself is a function of the
feature position and the respective camera position. The residual of the feature i as presented
here is calculated for every frame ` in which it was observed. Refer to figure 10, where a feature
is selected as an update step (in orange) and all its observations are included in the update
step. Every individual frame has a unique residual of the form of a 2 × 1 matrix. These frame
residuals are stacked vertically, to form the full residual of the considered feature, as eq. 45

shows.

ri =
[
r>i,0 r>i,1 r>i,2 ... r

>
i,N

]>
(45)

where N is the number of frames the residual is based on. The resulting size of the matrix is
2N × 1. Remember that this stacked residual is dependent on information in the state vector
and the feature position estimation, which is not represented in the state vector.
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The unabridged residual calculation of the MSCKF is

ri,` = zi,` −


C` x̂f
C` ẑf
C` ŷf
C` ẑf

+ ni,` (46)


C` x̂f

C` ŷf

C` ẑf

 = C(GC`
q̂)(Gp̂f − Gp̂C`

). (47)

Feature 
measurement

Feature 
projection

Figure 12: The feature measurement and projection; the distance between the two points in the image
is the residual of the MSCKF

4.6.4 Update

To update the MSCKF, some prep-work is necessary. The main elements are linearizing the
residual formulation, removing the feature dependent information, stacking the results and re-
moving any remaining noise parameters.

As seen in chapter 2.3 eq. 5, the residual calculation needs a linearized description, to
properly propagate the state covariance matrix. Therefore, the residual from eq. 46 is linearized
in the following fashion:

ri,` = HC`
x̃C`

+ Hf,`
Gp̃f + ni,` (48)
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where x̃C`
is the error state of the camera frame `, HC`

is the Jacobian of the residual with
respect to this state and Hf,` is the Jacobian of the residual of the current frame ` with respect
to the feature estimation. These two Jacobians are the partial derivatives of eq. 46.

St
at

e 
Ve

ct
or

Jacobian

Figure 13: Expanded Jacobian matrix multiplication with state vector

Comparing this residual of eq. 46 to the description from eq. 5, we must first rewrite the term
regarding x̃C`

into a proper state-vector dependent form:

ri,` = Hx,`x̃ + Hf,`
Gp̃f + ni,`. (49)

As the term is a part of the state vector (see eq. 17), this can easily be done by sectioning
the corresponding Jacobian HC`

into its part of a larger Jacobian Hx, as figure 13 provides.

State Jacobian Feature JacobianResidual

Figure 14: Vertical stacking of the Jacobians and residuals
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These resulting Jacobians and residuals per frame are now stacked vertically, see figure 14.
The entire information regarding this specific feature is now blocked together, represented by

ri = Hxx̃ + Hf
Gp̃f + ni.

Another noticeable difference to the formulation in chapter 2.3 is the second parameter Gp̃f ,
which is not a part of the state vector. Note, that this parameter is nevertheless correlated with
the state vector, as its parameter estimations are used to calculate the estimate Gp̂f . Due to
this correlation, the section Hf

Gp̂f cannot be partitioned into the uncorrelated Gaussian noise
n and must be dealt with differently.

In order to still be able to use the residual and state vector, Mourikis et al. [20] project the
residual r and Jacobian of the state-vector Hx onto the left nullspace of the Jacobian for the
feature position Hf . This yields the correct residual and propagation matrix for the defined state
vector. The nullspace of a matrix A is the set of all matrices for which

V = Null(A)

AV = 0.

The left nullspace can be calculated, such that

V = Null(A>)

V>A = 0.

This is the matrix form we need to properly project the linearized residual description of eq. 48

to remove the feature estimation from the equation. For this reason, we define V as

V = Null(H>f )

which makes it the unitary matrix forming a basis of the left nullspace of Hf . Note, that the
explicit values in V differ depending on the actual implementation - as there are an infinite
number of basis vector of the nullspace. Nevertheless, any projection onto the nullspace is
adequate to create a valid residual description for the state vector we have defined. Using this
V we can now calculate

ri = HxX̃ + Hf
Gp̂f + ni,` (50)

V>ri,` = V>HxX̃ + V>Hf
Gp̂f + V>ni

r0
i = H0

xX̃ + 0 + n0
i,`

in which we have defined V>ri as r0
i , V>Hx as H0

x and an equivalent renaming concerning
the noise parameter.
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If the noise parameters in the implementation are designed to be some scalar multiple of the
identity matrix,

n = scalar× I

then any reprojection of this term yields the same entries. The dimension of the noise matrix
changes nonetheless. Should the noise parameters be of elliptical form (non-identity matrix),
they will need to be reprojected regardless.

The original residual ri describes the stacked residual of all camera frames the feature was
observed in. It is important to point out, that the nullspaced residual can no longer be interpreted
as the distances between measurements and projections on the various image planes. Rather it
represents the difference between the feature measurements and the movements of the camera
directly. There is not necessarily an intuitive visual representation for this residual. Barring
linearization inaccuracies, it is nevertheless an optimal residual and Jacobian, describing the
change of the camera position in the state-vector.

Feature
measurement

Epipolar line
with feature

Figure 15: Alternative residual from epipolar constraints - each dotted line is generated using two camera
position estimations and the feature measurement of the same color

Regarding the resulting constraints induced by r0 - with the number of frames considered for
the feature residual beingN , the size of the Jacobian Hf is 2N×3 and (disregarding exceptions)
generally has full column rank. The left nullspace V therefore has dimension 2N − 3, which
translates to r0 being of size 2N−3×1 [75]. Mourikis et al. [20] state, that the same dimension of
constraint is created, when constructing the residual based on the epipolar constraints between
the images, as the same measurements are used multiple times, correlating the results. Figure
15 visualizes the general idea. The residual is the distance between the measured feature and
the epipolar lines. According to the paper, this residual is both more cumbersome to implement
and yields inferior results compared to the nullspaced residual.
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Now that we have a valid residual and Jacobian, it is possible to use it as-is for the update
step of the MSCKF. Analogous to chapter 2.4 on the Error-state Kalman Filter, the update to
the IMU based state propagation follows. Multiple features can be selected for the update step
in one update process, see figure 10. The multiple resulting residuals are stacked, parallel to
how the residuals of the single measurement are stacked. The resulting residual r is therefore
defined as

r =
[
r>0 r>1 r>2 ... r>m

]>
where ri is shorthand notation for the nullspaced residual r0

i and m is the number of features
in the update step. Equivalently, the Jacobians (H0

i,x written as Hi) are stacked such that

Hx =
[
H>0 H>1 H>2 ... H>m

]>
(51)

which can be collected in the equation

r = Hxx̃ + n. (52)

With each feature and camera frame used, the size of the Jacobian and residual increases with
m×(2N−3). To reduce the dimensions of the update step, QR decomposition [75] is employed
on the Jacobian matrix.

Hx =
[
Q1 Q2

]T

0


The QR decomposition separates a basis of the range Q1 and the nullspace Q2 of Hx and the
upper triangular matrix T. Substituting this into eq. 52 yields

r =
[
Q1 Q2

]T

0

 x̃ + n

which can be rearanged into Q>1 r

Q>2 r

 =

T

0

 x̃ +

Q>1 n

Q>2 n

 .
From this we can remove the trivial part, as Q>2 r = Q>2 n and result in

Q>1 r = Tx̃ + Q>1 n.

The projection onto the range of the Jacobian leaves us with a smaller Jacobian and residual
and leaves the parts which embody the non-noise information intact. The resulting residual and
Jacobian can now be used for the update step itself.
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The Kalman Gain is calculated analogously to chapter 2.3, using T from the new residual

K = PTT
(
TPTT + Rn

)−1
.

Redefining
rn = Q>1 r

we can now calculate the correction of the error-state vector, which gets compounded with the
current nominal state vector, see eq. 11 and 12.

δx = Krn.

The covariance matrix is updated as well, through

P = (I−KT) P (I−KT)> + KRnK
>.

The identity matrix I has the dimensions of the covariance matrix. The noise covariance
matrix R has become Rn after projecting it onto the range of the Jacobian. We define R

through the variance in n, σ2:
R = σ2I2N−3

where I is the size of the covariance matrix.

4.7 Monocamera Feature Extraction

We have covered all components of the MSCKF as shown in figure 6, except for the feature
extractor. This element is seperate from the MSCKF algorithm. As long as the input into the
feature extractor is an image and the output is a list of features on the focal plane of the camera
(basically, a camera-hardware agnostic feature representation), the exact mechanics of the
feature selection are not relevant.

Mourikis et al. [20] do not go into detail regarding the features used for their implementation
and their implementation in general. Sun et al. [45] on the other hand present their feature
extractor in open-source code. Therefore, the following section 4.8 regarding the stereo expan-
sion will have a segment on the feature extractor used in the respective paper, as that design is
used as the front-end of the implementations in this thesis.
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4.8 Stereo MSCKF

This section describes the implementation by Sun et al. [45] which expands the MSCKF pipeline
presented in the previous section to function on the basis of a stereo-camera and an IMU. The
main components are the expansion of the residual and the corresponding Jacobian matrices
as well as the design of a stereo-camera feature extractor.

4.8.1 State Vector

The main components of the state vector for the stereo-camera expanded MSCKF stay the
same as in section 4.3.1. It is assumed, that the extrinsic camera calibration is known. There-
fore, the camera states appended to the state vector remain based on the position estimation of
camera 0. The transformation between camera 0 and camera 1 could be modeled into the esti-
mation process as well, but as we will see in the measurement formulation, the stereo MSCKF
is more robust to errors in the camera calibration through its definition of the residual.

4.8.2 Residual and Jacobi

One measurement of a single feature in the stereo MSCKF is defined as

z =


u0

v0

u1

v1


where u and v are feature points and the index 0 and 1 represent camera 0 and camera 1
respectively. Through the extrinsic camera parameters (chapter B) the epipolar constraints
between the two camera frames can be used to reduce z from R4 to R3. And while the epipolar
constraints are used during the feature extraction to remove outliers, preserving the additional
dimension of the second frame removes the reliance on stereo rectification. This increases
robustness regarding errors in the camera calibration. It further makes the formulation of the
measurement function easier. The measurement of the feature i in the current frame ` can be
calculated through

zi` =


u0
i,`

v0
i,`

u1
i,`

v1
i,`

 =

 I2×2

C0
i Z`

02×2

02×2
I2×2

C1
i Z`



cC

0
i X`

C0
i Y`

C1
i X`

C1
i Y`
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with the position of the feature pj in the left camera 0 frame and the right camera 1 frame being

C0
i pf,i =


C0

i Xj

C0
i Yj

C0
i Zj

 = C(
C0

i
G q)(Gpf,i − GpC0

i
)

C1
i pf,i =


C1

i Xj

C1
i Yj

C1
i Zj

 = C(
C1

i
G q)(Gpf,i − GpC1

i
)

= C
(
C0

i

C1
i
q
)(

C0
i pf,i − C0

i pC1
i

)
.

The feature position in the world frame Gpf,i is determined through a least square estimation
analogous to the original MSCKF algorithm. Both camera frames have feature observations,
and both camera frame positions are estimated. Therefore all measurements from both cam-
era frames are used to estimate the feature position. The measurement model leads us to a
description of a cost function:

ri,` = zi,` −


û0
i,`

v̂0
i,`

û1
i,`

v̂1
i,`

 . (53)

Linearizing this residual yields

ri,` ' HC`,i x̃C`
+ Hf,i

Gp̃f,i + ni,`

parallel to the linearization in the original MSCKF. With the same procedure depicted in figure
14, the residuals and Jacobians of each frame of the feature are stacked vertically. The same
nullspace projection is used. After another vertical stacking of all features into a residual and
a Jacobian, we receive a general description as in eq. 52. This is subsequently projected onto
the range to reduce the matrix sizes by removing the pure noise values. The Jacobians of the
stereo MSCKF are simply created by use of the chain rule and partial derivations:

HCi,`
=

∂zi,`

∂C
0
i,`pf,`

·
∂C

0
i,`pf,`
∂xC0

i,`

+
∂zi,`

∂C
1
i,`pf,`

·
∂C

1
i,`pf,`
∂xC0

i

Hfi,` =
∂zi,`

∂C
0
i,`pf,`

·
∂C

0
i,`pj,`

∂Gpf,`
+

∂zi,`

∂C
1
i,`pf,`

·
∂C

1
i,`pf,`

∂Gpf,`

Note, that only the camera 0 state is estimated and corrected in the state vector. The deriva-
tions regarding the state vector are thus reformulated to be derivatives toward xC0

i,`
and Gpf,`.
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4.8.3 Stereocamera Feature Extraction

The stereo MSCKF uses a multitude of steps to extract features from the received stereo images
and track them over time in a robust and computationally efficient manner. This section gives
a summary of the feature extractor designed by Sun et al. [45], as the same extractor is used
for the stereo-photometric and the anchor-frame expansion. The main components of feature
detection are

• tracking existing features

• finding new features in the images

• stereo matching and

• outlier detection.

Lukas-Kanade iterative optical flow [76] is used to track features through their spacial as
well as temporal displacement. Features from the previous camera 0 frame are used to find
features in the current camera 0 frame. The left side of figure 16 shows this approach, a step-
wise tracking of features from the last recorded frame to the current one. Any feature for which
no match can be found in the current frame is dropped and used in the update step (the lost
features in figure 16.

Using a mask to hide all features already tracked from the previous image camera 0, the
FAST feature detector is used to locate new features in the current frame k + 1.

k+1

   k

Camera 0 Camera 1

Old measurement

Lost features

New measurement

Tracked features
LK Tracker

LK
 T

ra
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er
LK

 T
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Figure 16: Tracking features through time and space

Similar to the temporal matching of features, features from camera 0 are used to find their
stereo-matched feature in camera 1, as figure 16 shows (left to right). Any features matched be-
tween the Lukas-Kanade image pyramids are saved. Features that do not have an observation
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in both cameras or do not have a temporal match are removed. Figure 16 gives an example.
The red features in time-step k are features which have not found a twin in k+1. The red feature
in k + 1, camera 0 is a feature without a stereo-matched twin. Both features are therefore used
for an update of the filter and subsequently removed.

Feature kept

Feature removed

Figure 17: Grid to disperse the features more evenly across the frame

All remaining features with a spacial and temporal match are subsequently segmented into
a grid overlaying the frame (see figure 17, the blue dotted lines). The features in each grid are
ordered by their response quality. Each grid only keeps its top n features, where n is a set
threshold value. This spreads the tracked features more evenly across the frame and makes
the resulting bag of features more robust to change. The total number of features tracked is
bounded by grid size and the number of features per cell. In figure 17 a 3x3 grid with one fea-
ture per parcel is shown. The number of features lost per time instant when the camera moves
around is spread out more evenly.

The pair of camera 1 images of time-step k and k + 1 are used for outlier-rejection, removing
any features, which movements are outside a certain expected step-size and range [77]. Addi-
tionally, a 2-point RANSAC [78] is applied between the two frames of camera 0 to remove any
further outliers.
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5 Anchor-Frame MSCKF

Based on the MSCKF pipeline of the previous chapter, this chapter presents a novel variation
in the feature position estimation process. Instead of estimating the feature position in the
world with three degrees of freedom, the first camera frame with an observation of the feature
is used to constrain the feature position along a line. This not only changes the estimation
process but also the residual linearization. As we will see, this residual design has a decreased
accuracy compared to the stereo MSCKF but is more computationally efficient. This exact
formulation is the basis for the photometric and stereo-photometric MSCKF formulation, which
uses some anchor-frame measurements to decrease total computational load. The following
section presents the anchor-frame based estimation process itself, section 5.2 presents the
residual linearization of this formulation. The stereo image based anchor-frame residual is
presented in the last section 5.3.

5.1 Feature Position Estimation

Figure 18 shows the differences between the MSCKF approach to estimating the feature posi-
tion and the anchor-frame based approach.

The first frame with an observation of the currently considered feature - F1 in figure 18 will
be called the anchor frame from this point on. The frame position of the anchor frame is esti-
mated in the state vector just like any other frame. This estimation, along with the measurement
coordinates u and v of the feature returns a vector along which the position of the feature is es-
timated. Instead of estimating the [x y z]> coordinates of the feature based on the collection
of measurements as in chapter 4.6.1, only the depth of the feature with regards to the anchor
frame is estimated.

Depth estimation is done through a Levenberg-Marqhart approximation. This nonlinear es-
timator uses the feature observations in every camera frame to optimally estimate the depth
value of the feature in the frame with the initial observation - the anchor frame. The initial guess
for the estimator uses the least square problem formulation based on the information in the first
and last observations of the feature, as shown in the previous chapter in section 4.6.1. This
reduces the estimation complexity of the Levenberg-Marquart formulation - the cost function
calculation per measurement is reduced alongside with the Jacobian.
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Estimating depth of feature in anchor frame

Estimating 3D feature position

Figure 18: Feature projection comparison

5.2 Anchor-Frame Residual Linearization

The residual formulation as shown in eq. 52, is not directly edited - as the parameters of this
formulation have not changed. Contrarily, the dependencies of the residual regarding the state
vector and the non-state components have changed with the reformulation of Gpf . Specifically,
the measurement function of a particular observation is now dependent on the observation
camera position xCi,`

, the anchor-frame position xAi and the depth of the feature di. For nu-
merical stability and due to a more direct estimation formulation of the Levenberg-Marquart
formulation, the inverse depth ρi is used. The residual can therefore be written as:

r = z− h(x̂Ai , ρ̂i, x̂Ci,`
)

= z− h(Gpf (x̂Ai , ρ̂i), x̂Ci,`
).

50



To linearize this residual, as in chapter 2.3 the Taylor expansion of the h(·) function is con-
structed after separating the true state of the variables into their nominal and error sum.

r = z− h(x̂Ai , ρ̂i, x̂Ci,`
)

' z− h(xAi , ρi,xCi,`
) + Hρi,` ρ̃i,` + Hpi,`

p̃i,` + Hpi,Ap̃i,A

' Hρi,` ρ̃i,` + Hpi,`
p̃i,` + Hpi,Ap̃i,A

This leaves us with a linearized description of the residual. The desired Jacobi matrices can be
described using the chain rule:

Hρi,` =
∂h`
∂ρi

=
∂h

∂Cpi,j

∂Cpi,j
∂Gpi,j

∂Gpi,j
∂ρ̃i

(54)

Hpi,`
=

∂h`
∂xp`

=
∂h

∂Cpi,j

∂Cpi,j
∂δxp`

(55)

Hpi,A =
∂h`
∂xpA

=
∂h

∂Cpi,j

∂Cpi,j
∂Gpi,j

∂Gpi,j
∂δxpA

(56)

Note, that this description is the residuum based on the nominal state. The Kalman Filter
operates on the error state. But as the following shows, on the basis that:

x̃ = δx̂ + δx̃

δx̂ = 0

the expected error is zero, the expected residual is zero as well:

r = r̂ + δr

r̂ = 0.

Therefore, the formulation of the residual derived with respect to the error state is the only
non-zero component. The following equations are the Jacobian matrices for one feature in one
singular frame. The appropriate index for this feature i and for the frame ` are removed from
these equations to enhance readability - compare this to the previous equations, where the full
Jacobians are sketched out. The derivations of the matrices are detailed afterwards.
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∂h

∂Gpj
=

∂h

∂Cpj
·
Cpj
∂Gpj

=

1

z
0 − x

z2

0
1

z
− y

z2

 · C(CGq)

∂h

∂XPl
=

[
∂h

∂Cl
G δθ

∂h

∂GpC`

]
=

[
∂h
Cpj

·
Cpj

∂Cl
G q

∂h
Cpj

·
Cpj
∂GpC`

]
∂Cpj

∂Cl
G δθ

= bCpjc×

∂Cpj
∂GpC`

=− C(CGq)

∂Gpj
∂ρ

= C(AGq)
> ·
[
− u

ρ2
− v

ρ2
− 1

ρ2

]>
∂Gpj
∂XPA

=

[
∂Gpj

∂Cl
G δθ

∂Gpj
∂GpA

]
∂Gpj

∂Cl
G δθ

=− C(AGq)
>b
[
u

ρ

v

ρ

1

ρ

]>
c×

∂Gpj
∂GpA

= I3

Recall the ranking of functions which result in the feature position

z`,j = h
(
Gp (ρi,xpA) ,xp`

)
. (57)

Note, that the linearization points for these Jacobians is the error state. To produce the correct
Jacobians, the description of the true state in eq. 65 and following need to be split into a nominal
and an error part. To ease readability the following substitution is made: C(CGq) = C

GR. Recalling
the chained Jacobians of eq. 54, the necessary error-state descriptions are of Cpj and Gpj .
The next section will derive the first Jacobian ∂h

∂Cpi,j
as well as the error-state descriptions and

resulting Jacobians. The subsequent section summarizes the restructuring process to fit the
Jacobians into a Kalman Filter framework.

5.2.1 Error-State Jacobian Derivation

The derivation of ∂h
∂Cpj

is the derivation of eq. 65 regarding Cpj , which is

∂h

∂Cpj
=

1

z
0 − x

z2

0
1

z
− y

z2

 .
To derive C p̃j and subsequently calculate its derivative with respect to the current camera
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state, we must first extract the error-state formulation from Cpj

Cpj = C p̂j + C p̃j = C
GR (Gpj − Gpl)

= C
GδR · CGR̂ (Gp̂j + Gp̃j − Gp̂l − Gp̃l)

' (I3 − bδΘc×) · CGR̂ (Gp̂j + Gp̃j − Gp̂l − Gp̃l)

where according to Trawny et. al. [79] a small-angle quaternion rotation can be described as a
rotation matrix

δq '

1
2δθ

1

 = (I3 − bδΘc×).

We can now cross multiply to receive

C p̂j + C p̃j ' C
GR̂Gp̂j − C

GR̂Gp̂l + C
GR̂Gp̃j − C

GR̂Gp̃l − bδΘc× · CGR̂)(Gp̂j + Gp̃j − Gp̂l − Gp̃l)

where we can remove

C p̂j = C
GR̂Gp̂j − C

GR̂Gp̂l

as we are interested in the error term representation only. Further cross-multiplying, and re-
moving any terms dependent on errors of errors, we receive:

C p̃j ' C
GR̂Gp̃j − C

GR̂Gp̃l − (bδΘc× · CGR̂)(Gp̂j + Gp̃j − Gp̂l − Gp̃l)

' C
GR̂Gp̃j − C

GR̂Gp̃l − bδΘc× CGR̂Gp̂j −((((((((
bδΘc× CGR̂Gp̃j

+ bδΘc× CGR̂Gp̂l +((((((((
bδΘc× CGR̂Gp̃l

' C
GR̂Gp̃j − C

GR̂Gp̃l − bδΘc× CGR̂Gp̂j + bδΘc× CGR̂Gp̂l.

Using the following equivalency from [79]

bac× · b = −bbc× · a

we receive
' C

GR̂Gp̃j − C
GR̂Gp̃l + bCGR̂Gp̂jc× δΘ− bCGR̂Gp̂lc× δΘ .

Using this equivalency, we can now refer back to the Jacobian descriptions in eq. 54. The
desired partial derivatives are

∂Cpj
∂Gp̃j

,
∂Cpj

∂CGδθ
,

∂Cpj
∂Gp̃l

.
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The first derivation regarding the error in the position of the feature is trivially:

∂Cpj
∂Gp̃j

= C
GR̂

and similar the derivation regarding the error in the position of the camera

∂Cpj
∂Gp̃l

= −CGR̂ .

Finally, regarding the error in the cameras orientation:

∂Cpj

∂CGδθ
= bCGR̂Gp̂jc× − bCGR̂Gp̂lc×

= bCGR̂Gp̂j − C
GR̂Gp̂lc×

= bCGR̂(Gp̂j − Gp̂l)c×

∂Cpj

∂CGδθ
= bC p̂jc× .

The second set of derivations regards the position of the feature in the world frame Gpj .

Substituting u =
[
u v 1

]>
, it can be formulated as

Gpj = GpA + A
GR>

1

ρ
u

Gp̂j + Gp̃j ' Gp̂A + Gp̃A + ((I3 − bAGδθc×)AGR̂)>
1

ρ
u

multiplying the small-angle approximation from the left. With some basic matrix calculations,
we receive

Gp̂j + Gp̃j ' Gp̂A + Gp̃A + ((I3 − bAGδθc×)AGR̂)>
1

ρ
u

' Gp̂A + Gp̃A + A
GR̂> (I3 − bδAGθc×)>

1

ρ
u

' Gp̂A + Gp̃A + A
GR̂> (I>3 − bAGδθc>×)

1

ρ
u

' Gp̂A + Gp̃A + A
GR̂> (I3 + bAGδθc×)

1

ρ
u

subtracting Gp̂j from both sides in the last line, using its initial description:

Gp̃j ' Gp̃A + A
GR̂> (I3 + bAGδθc×)

1

ρ
u− A

GR̂>
1

ρ̂
u.
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Cross-multiplying the small-angle approximation, results in the following error state descrip-
tion of the feature position in the world coordinate frame:

Gp̃j 'Gp̃A + A
GR̂>

1

ρ
u + A

GR̂> bAGδθc×
1

ρ
u− A

GR̂>
1

ρ̂
u (58)

from which we can derive the three partial derivatives

∂Gpj
∂ρ̃

,
∂Gpj

∂AGδθ
,

∂Gpj
∂GpA

.

First, the derivation regarding the inverse depth error ρ̃

∂Gpj
∂ρ̃

= − A
GR̂>

1

(ρ̂+ ρ̃)2
u + A

GR̂> bAGδθc×
1

(ρ̂+ ρ̃)2
u

where the mean of ρ̃ and δθ is 0. For that reason, the derivation reduces to

∂Gpj
∂ρ̃

= −GAR̂
1

ρ̂2
u .

The next derivation is the small-angle rotation error between the anchor frame and the
Ground frame. Again, we use eq. 58 and use the small-angle equivalency (eq. 3 in appendix
2.2), focusing only on the relevant part for the derivation:

Gp̃j ' ...+ A
GR̂> bAGδθc×

1

ρ
u− ...

' ...− A
GR̂> b1

ρ
uc× AGδθ − ...

from which point forward we can simply derive by the small angle δAGθ which is now a vector in
the last step of a matrix multiplication.

∂Gpj

∂AGδθ
= −AGR̂> b1

ρ
uc× .

The final Jacobian, the derivation of eq. 58 towards the anchor position in the world frame is
simply

∂Gpj
∂GpA

= I3×3 .
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5.2.2 Restructuring of the Feature Jacobian

This last section leaves us with a complete description of the Jacobians for the anchor-based
residual for one frame of one feature.

r ' Hρi,` ρ̃i,` + Hpi,`
p̃i,` + Hpi,Ap̃i,A

Similar to the original MSCKF, these Jacobians must be brought into a state-vector affable
form. We write the residual of one frame of one feature in the form

ri,` = Hxi,`
x̃ + Hρi,`ρi. (59)

Note, that that ρi is the same for every frame of the feature. Hxi,`
is constructed as

Hxi,`
=
[
0 . . . 0 Hpi,A 0 . . . 0 Hpi,`

0 . . .0
]

and the resulting Jacobians are stacked into a single feature Jacobian:

Hxi =
[
H>xi,1

H>xi,2
. . . H>xi,n

]>

State Jacobian Depth Jacobian

Figure 19: The Jacobians of multiple measurements for one feature

and analogously for Hρi . Figure 19 visualizes the stacking structure of the anchor Jacobian
and the frame Jacobian for all frames in which the considered feature has an observation. The
Jacobian regarding the inverse depth ρ is also stacked. ρ is not estimated in the state vector
though. Just as in the previous chapter 4.6.4, the linearized residual in eq. 59 is projected onto
the nullspace of Hρi .
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5.3 Stereo Anchor-Frame Residual

We now have a complete formulation of the MSCKF using the anchor-frame based feature
estimation. Using a stereo camera setup for feature estimation increases the robustness and
accuracy of the process, as the known stereo baseline between the two cameras allows for an
exact triangulation of points. Therefore, we try to integrate the information of a second camera
into the residual formulation of this anchor-based MSCKF. The following section will describe
this expansion in detail. Note that the stereo expansion of the MSCKF - which was conceptually
explained in section 4.8 - works similar to the calculations presented in this chapter.

The stereo residual is reformulated exactly as in eq. 53. Again, to increase robustness re-
garding errors in the external camera calibration, the residual is not reduced through epipolar
constraints but remains in R4. Linearizing this residual using the anchor-based measurement
function eq. 57 yields the following anchor Jacobians. Compare to eq. 54, in which only one
camera was used.

The Jacobian structure, using partial derivatives towards camera 0 and camera 1, is

Hρi,` =
∂h`
∂ρi

=
∂h

∂C0pi,j

∂C
0
pi,j

∂Gpi,j

∂Gpi,j
∂ρ̃i

+
∂h

∂C1pi,j

∂C
1
pi,j

∂Gpi,j

∂Gpi,j
∂ρ̃i

(60)

Hpi,`
=

∂h`
∂xp`

=
∂h

∂C0pi,j

∂C
0
pi,j

∂δxp`
+

∂h

∂C1pi,j

∂C
1
pi,j

∂δxp`
(61)

Hpi,A =
∂h`
∂xpA

=
∂h

∂C0pi,j

∂C
0
pi,j

∂Gpi,j

∂Gpi,j
∂δxpA

+
∂h

∂C1pi,j

∂C
1
pi,j

∂Gpi,j

∂Gpi,j
∂δxpA

(62)

where

∂h

∂C0pf
=



1
C0z

0 −
C0
x

C0z2

0
1

C0z
−

C0
y

C0z2

0 0 0

0 0 0



∂h

∂C1pf
=


0 0 0

0 0 0
1

C0z
0 − x

C0z2

0
1

C0z
− y
C0z2


and from the previous section we already know

∂C
1
pf

∂xC0

=

(⌊
C0

p̂f

⌋
×
− C

(
C0

G q̂
))
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from which we can compute

∂C
2
pf

∂xC1

= C
(
C1

C0q
)> ∂C1

pf
∂xC0

∂C
2
pf

∂xC1

= C
(
C1

C0q
)>(⌊

C0
p̂f

⌋
×
− C

(
C0

G q̂
))

.

This expansion merges the information of both cameras into a cost function for the Kalman
Filter.

With this chapter, we have changed the estimation process of the feature to an anchor-frame
based formulation. This has the advantage of reducing the size of the nullspace matrix and
simplifying the estimation process of the feature position to a one-dimensional problem. The
next chapter will alter this formulation of the MSCKF by using the pixel values around the feature
directly, instead of using the feature position as the measurement.

6 Photometric Expansion

Zheng et al. [62] present a photometric patch-based visual inertial odometry algorithm based
on the monocamera MSCKF pipeline of chapter 4, changing the update step from a feature-
based to a semi-dense formulation. The following chapter presents detailed derivations for this
photometric expansion of the monocular MSCKF and building on that, expands this concept
to stereo images. The anchor-frame based measurement formulation is used as a basis for
this photometric expansion. The first section will summarize the photometric approach - the
subsequent section will expand on the update step and the Jacobians used for the calcula-
tion, including the addition of the stereo camera in the residual. The indirect approach of the
irradiance formulation, which directly uses the anchor frame in the residual formulation, will be
explained thereafter. It is used to reduce the computational cost of the algorithm.

6.1 Overview

The difference between the standard MSCKF and the photometric MSCKF is the measurement
function. The standard MSCKF uses the distance between the estimated and the measured
position of a feature - and proceeds to use it for the Kalman Filter covariance optimization. The
photometric MSCKF instead uses the pixel intensity values around this feature and corrects the
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error between the initial intensity patch and the measured patch at the estimated position of the
feature, see figure 20. The estimation step regarding the IMU is the same as in the standard
MSCKF. Differences are found in the calculation of the residual and its linearization for the state
propagation. The goal of the photometric expansion in [62] was to use the same feature points
as the standard MSCKF uses, to show only the error reduction through a change in the cost
function.

Refer to figure 4 for a summary of the entire MSCKF. The following figure 20 visualizes the
general concept of the photometric residual. The feature position in the world coordinate frame
is estimated with the process presented in the anchor-frame based MSCKF. The pixel points
around the considered feature are projected into the world frame as well, using the same in-
verse depth estimation ρ. Similar to the reprojection of figure 11, all the points of this patch
around the feature are reprojected into each considered frame.

In step one of figure 20 the patch around the measured feature position is extracted. The
reprojection of the anchor patch into this currently considered frame is extracted as well. Note,
that the reprojected patch is subject to errors based on the errors from the IMU prediction, just
as the feature position in the MSCKF is. This is the error we want to reduce. Step two shows the
actual relation between the two patches and the pixel version of the patches individually. The
residual is constructed in step three, showing the uncorrelated parts of the patch. The patch
derivative in step four represents the direction the reprojected patch has to move, in order to
minimize the discrepancy. Note, that there are two distinct gradients in the x and the y direction
of the image. The correction based on the residual and the gradients in x and y direction
are visualized as direction and magnitude arrows in every pixel in the final step in figure 20.
In essence, this is what the photometric cost function of this chapter uses to update the IMU
prediction, represented through arrows in every pixel in the final step.

6.2 Update Step

Initially, only the feature observations in each frame are saved for each feature. Alongside a
moving window of camera positions saved in the state variable, the image from the camera
frames themselves are temporarily saved - these images are later used in the measurement
update. Recall, that the update procedure is called, when a feature is no longer tracked (be-
cause it has left the frame) or when a feature observation is removed when removing frames
from the moving window of camera positions.

In this update step, all observations of a feature are used to estimate the true 3D position of
the feature in the world frame, which gives us an estimate of ρ, the inverse depth of the feature
in relation to the anchor frame. Using the estimated position of the anchor frame from the state
vector, the observation of the feature and the inverse depth information regarding the feature in
the anchor frame ρ, the position of the pixel patch around the feature is calculated.
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Patch Projection

Pixel Values

Residual

Image Gradients

Correction

Figure 20: The residual formulation of the patch-based photometric MSCKF visualized

Note, that to calculate the points in this pixel patch, the true pixel positions in the camera
image are used, calling them u′ and v′. These points in the image plane are projected into
space using the pinhole model.

Gpj = GpA + C(AGq)
> ·


u
ρ

v
ρ

1
ρ

 (63)

The values of u′ and v′ are calculated deterministically around the observed feature position
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in the current frame. Therefore, the only estimations used in the previous calculation are ρ and
the anchor camera state xCl

= [GAq
GpA].

These j patch points are then transformed into the new camera frame and projected onto the
new camera frames image plane:

Cpj =


Clx

Cly

Clz

 = C(CGq) · (Gpj − GpC l) (64)

ẑ =

Clx
Clz
Cly
Clz

 (65)

where the backward projection of eq. 65 again uses the pinhole model. The resulting pixel
value at this point is considered the measurement of the irradiance. Note, that the image
frames in the algorithms are pre-undistorted using the appropriate camera distortion model,
see figure 21. This allows the usage of the simple pinhole-model projection (appendix B). This
back-projection of the anchor patch onto the new image is the reason the anchor-frame de-
scription is used as the precursor to the photometric approach. Using the feature position from
the anchor-frames point of view creates a defined pose for the patch in space, without having
to add additional constraints regarding the patch orientation.

Figure 21: Undistorting an image using a fish-eye model for the camera
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6.3 Photometric Residual

With these two types of data:

• the measurement of the pixel values in certain points based on the reprojection of points
around a feature and

• the true pixel values based on the measurement around the actual feature

the residual can be constructed and linearized, parallel to eq. 59.

ri,`,j = zi,`,j −

Clx
Clz
Cly
Clz


where j defines the pixel in the patch and N ×N is used to describe the size of the pixel patch.
For a patch-size of 3 × 3, j would range from 0 to 8. These different residual values for each
point in the patch are stacked, forming the residual of the measurement

ri,` =
[
r>i,`,0 r

>
i,`,1 . . . r>i,`,N×N

]>
.

This residual formulation can be linearized in the same manner as in chapter 5.2. Recall, the
ranking of the functions which result in the irradiance at a specific point:

I`,j = I`
(
h
(
Gp (ρi,xpA , j) ,xp`

))
.

Note that the only difference in the photometric measurement function compared to the an-
chor measurement function in eq. 57 is the added irradiance function block. The residual
formulation is different compared to the anchor formulation, but the individual Jacobians remain
mostly untouched, as they are only dependent on the measurement description. The desired
Jacobi matrices can be described using chain rule:

Hρi`,j =
∂I`
∂ρi

=
∂I`
∂h

∂h

∂Cpi,j

∂Cpi,j
∂Gpi,j

∂Gpi,j
∂ρ̃i

(66)

Hpi,`,j
=

∂I`
∂xp`

=
∂I`
∂h

∂h

∂Cpi,j

∂Cpi,j
∂δxp`

(67)

HpiA,j =
∂I`
∂xpA

=
∂I`
∂h

∂h

∂Cpi,j

∂Cpi,j
∂Gpi,j

∂Gpi,j
∂δxpA

(68)

The change in irradiance ∂I` in x and y direction is extracted from the pixel values. As figure
22 shows, the surrounding horizontal and vertical pixels of the pixel in question convoluted with
an image-gradient kernel return an estimate to this change in irradiance.

For the irradiance change in x direction ∆Ix the left pixel values in row px−1,y are subtracted
from the right pixel values of row px+1,y. The equivalent calculation is done for the y direction.
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x - Derivative y - Derivative

Figure 22: Image gradient example for the x and y direction of an image

This 1D Sobel kernel is a standard procedure in image processing [80]. Other implementations
of the Sobel kernel use a Gaussian smoothing kernel in addition to the 1D Sobel kernel, to
reduce noise errors. This has been shown to greatly increase the quality of the gradient im-
age [80]. The following are three examples of Sobel kernels with various levels of Gaussian
smoothing on the x-axis. Y-axis Sobel kernels are the transpose of the x-axis Sobel kernel.

S1 =
[
1 0 −1

]

S3 =


1 0 −1

2 0 −2

1 0 −1



S5 =



1 2 0 −2 −1

4 8 0 −4 −8

6 12 0 −12 −6

4 8 0 −4 −8

1 2 0 −2 −1


with each line being convoluted with the Gaussian smoothing operator [1 2 1] an additional time.
The convolution of this Sobel kernel with an image returns the change in irradiance.

This result is the delta value in pixel-space. As the measurement of feature position is mea-
sured in the focal plane, we need to transform this change per pixel into a camera agnostic form.
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This transformation can be achieved using the focal length f in the intrinsic camera parameters
(refer to appendix B).

∂I`
∂h

=
∂I`
∂pixel

∂pixel

∂h
= [Sobelx Sobely]

fx 0

0 fy


This is the only change necessary, when moving from the anchor Jacobians to the photometric
measurement Jacobians.

6.4 Residual Calculation

As previously noted, eq. 6 and eq. 73 do not have the same form. To remove these parameters,
Mourikis et al. [20] project the according Jacobian matrix, the residual and the noise onto its
nullspace.

To use this method of removal, the linearized residual in eq. 73 is to be brought into the
form of eq. 50. This is done equal to how the anchor-frame MSCKF residual linearization was
reformulated. The stacking of the measurement Jacobians is done in the same way as shown
in eq. 51 and figure 19 and will not be reiterated here.

6.5 Stereo-Photometry

Using the Jacobian formulation of the photometric expansion eq. 66 and the Jacobians of the
anchor-frame stereo expansion eq. 60, we can combine both concepts by adding the image
gradient derivative to the respective camera frame blocks:

Hρi,` =
∂h`
∂ρi

=
∂I0

`

∂h

∂h

∂C0pi,j

∂C
0
pi,j

∂Gpi,j

∂Gpi,j
∂ρ̃i

+
∂I1

`

∂h

∂h

∂C1pi,j

∂C
1
pi,j

∂Gpi,j

∂Gpi,j
∂ρ̃i

(69)

Hpi,`
=

∂h`
∂xp`

=
∂I0

`

∂h

∂h

∂C0pi,j

∂C
0
pi,j

∂δxp`
+
∂I1

`

∂h

∂h

∂C1pi,j

∂C
1
pi,j

∂δxp`
(70)

Hpi,A =
∂h`
∂xpA

=
∂I0

`

∂h

∂h

∂C0pi,j

∂C
0
pi,j

∂Gpi,j

∂Gpi,j
∂δxpA

+
∂I1

`

∂h

∂h

∂C1pi,j

∂C
1
pi,j

∂Gpi,j

∂Gpi,j
∂δxpA

. (71)

This combines the past results of the anchor-frame formulation and the photometric formulation
into a complete stereo-photometric Jacobian description.

6.6 Anchor-Image Approximated Stereo-Photometry

Instead of using the measurements - and the image gradient - of the current image as a refer-
ence value for the residual projection, we can use the measurements and gradient of the anchor
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frame. This is the photometric formulation used by Zheng et al. [62].

The anchor-frame projection is equal to the pixel patch around the feature, as the feature
position was estimated using the anchor-frame constraint. Using this data for every one of the
measurements greatly reduces the cost of each measurement estimation but adds additional
uncertainty to the residual. The irradiance vector of the anchor image ξi is the same for the
entire feature. Due to changes in the exposure time ai,` of the different frames, the difference
between two irradiance vectors of two different images might be skewed. To counteract this,
the irradiance vectors of both images are normalized by their respective exposure time and an
estimated exposure bias bi,`. This models the change of irradiance through a linear function.
Note, that we can split both the a and b parameter into a frame respective (a`, b`) and fea-
ture respective part (ai, bi). The exposure-normalized irradiance measurement in a frame is
therefore

ξi,`
ai,`
− bi,` =

ξi,A
ai,A

− bi,A

from which we can set the irradiance estimation of the feature: ξi as

ξi =
ξi,A
ai,A

− bi,A.

With this we can now form the measurement residual

ri,`
.
= I` (ρ̂i, x̂pA , x̂p`

)− âi`ξ̂i − b̂i`1 . (72)

It is simply the difference between the expected measurement, which is based on the predic-
tion of the IMU, and the true measurement of the feature in the anchor image. The irradiance
estimation assumes, that all camera measurements of the j points in 3D space are perfect -
therefore, if the prediction is perfect, the change between the anchor frame and the considered
frame should only be a function of the exposure time.

Parallel to the linearization of eq. 5, the photometric residual of eq. 72 is Taylor approximated.

ri,`
.
= I` (ρ̂i, x̂pA , x̂p`

)− âi,`ξ̂i − b̂i,`1

= I` (ρi − ρ̃i,xpA − x̃pA ,xp`
− x̃p`

)− âi,`ξ̂i − b̂i,`1

' I` (ρi,xpA ,xp`
)−Hρ` ρ̃i,` −Hp`

p̃i,` −HpAp̃i,A − âi,`ξ̂i − b̂i,`1

' I` (ρi,xpA ,xp`
)−Hρ` ρ̃i,` −Hp`

p̃i,` −HpAp̃i,A − (ai,` − ãi,`)(ξi − ξ̃i)− (bi,` − b̃i,`)1

' I` (ρi,xpA ,xp`
)−Hρ` ρ̃i,` −Hp`

p̃i,` −HpAp̃i,A − ai,`ξi + ãi,`ξi + ai,`ξ̃i − ãi,`ξ̃i − bi,`1 + b̃i,`1

removing higher order error terms and injecting the true irradiance description, we receive:

ri,` ' −Hρi` ρ̃i,` −Hpi,`
p̃i,` −Hpi,Ap̃i,A + ãi`ξ̂i + âi`ξ̃i + b̃i,`1 + ni,`. (73)
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The description of the residual (eq. 72) and more importantly its function h - which returns the
irradiance - is a function of the estimated distance to the anchor frame ρ, the estimation of the
anchor pose x̂pA and the estimation of the considered frame pose x̂p`

. Note, that the individual
Jacobians therefore stay the same as in eq. 66 but the resulting Jacobians for the nullspacing
are stacked differently. Notably so, because we have an array of different terms in the residual
which are not tracked in the state vector, such as ξ, a and b. For this reason, we must construct
the Jacobians as shown in the following part. As a reminder, the resulting structure we want to
achieve to correctly be able to nullspace the feature position information is

ri,` ' Hxx̃+ Hyỹ + n.

Note here, that as in the work of Zheng et al. [62], it is possible to estimate any of the
photometric parameters a`, ai,`, b` or bi,` by adding them to the state-vector in the camera state
description. The general vector χ represents a collector for any photometric parameters in the
state vector, making a single camera-state

xC`
=
[
C`
G q

GpC`
χ
]>
.

With this modification, the error state of a camera is now multiplied by a Jacobian structured as
follows:

HX = [0 . . . [−HA 0] . . .0 . . . [−HC`
1] . . .0]>

with the 0 and 1 in the sub-segments of the segments being the parts, which are multiplied
with χ all the photometric parameters corresponding to the respective camera frame. Note,
that these are the estimated values which we included in the state vector. The structure of ỹ is
straightforward, accumulating all the parameters, which are used but not tracked inside the state
vector. Note that the structure differs depending on which of the four photometric parameters
are tracked and which are not. All four parameters are added here, to demonstrate the process.
Any variables which one wishes to estimate in χ are of course removed from ỹ and from Hy

correspondingly.

ỹ =
[
ξ̃>i ãi,` b̃i,`

]>
The description of Hy is therefore

Hy =
[
âi,`IN×N

[
0 . . . ξ̂i . . .0

]
1 −Hρi,`

]>
.

The inner block regarding the irradiance estimation ξ̂i is constructed depending on the current
considered frame. Compare to eq. 73, where it is multiplied with ai,`. Figure 23 visualizes this.
Note, that for the nullspacing to work, the size of a patch must be larger than 1 × 1, as without
it the matrix has 0 degrees of freedom.
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Figure 23: Creating the Jacobian used to nullspace the residual - two frames stacked on top of each
other, each with a 2 × 2 patch size

6.7 Outlier Detection

Not all features are equivalent in their produced update step. Patch-gradients can be higher or
lower than the desired true update step would be. Some patch information is only highly local to
the patch, while other patch update directions are valid for larger segments of the picture, see
figure 24. The figure shows two different patches. One, where the area in which the reprojected
patch produces the correct update direction is large, and one where the region is not much
larger than the patch itself. Note, that while the update direction may be correct, the update
magnitude is still prone to error, unless the image gradient is perfectly even.

Further, features can be matched incorrectly by the feature extractor front-end or a features
inverse depth ρ can be off. Both of these sources of error lead to highly incorrect patch repro-
jection in the images. To remove such update outliers, the Mahalanobis gating test is used.
A Mahalanobis gating test calculates the weighted distance of the residual to the mean of the
current estimation [81]. The Kalman Filter lends itself to this form of outlier detection, as the co-
variance of the current state is optimally estimated alongside the mean state-vector prediction.
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Figure 24: Two patches with different local behavior in the same image frame

As the error-state formulation of the Kalman Filter has a mean prediction of zero, the formu-
lation of the resulting mean square error γ is

γ = r>(HPH> + n I)−1r

with the state transition Jacobian H, the state covariance P, the noise parameter n and the
residual r. The resulting γ is compared to chi-squared lookup table, with the desired quantil
parameter. The degrees of freedom for the chi-squared gating test is the dimensions of the
residual. See Ugoni & Walker [82] for more details on the topic of the Chi square gating test.

The Mahalanobis gating test inherently tends to eliminate any low patch-gradient, as it is a
part of the covariance of the state description. Large changes in the residual lead to a large
update, which get eliminated as well, unless the covariance is already large.

7 Implementation and Evaluation

The formulation and derivation of the three position estimators - the stereo MSCKF, the stereo
anchor-based MSCKF and the stereo-photometric MSCKF have been presented in the last few
chapters. When referring to the photometric MSCKF, the stereo-photometric MSCKF is meant.
The implementation of the estimators is based on the open-source MSCKF of Sun et al. [45].
The existing feature extractor front-end and the IMU prediction step are used directly, the novel
update procedures are implemented separately, compare to figure 6. The implementations will
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be evaluated in this chapter using a state of the art open-source VIO dataset.
After a brief look at the necessary parameters used by these algorithms and a section re-

garding the implementation of the moving window, we will present the evaluation techniques
used to compare our approaches of the MSCKF implementations. Subsequently, we will detail
the results of the evaluation.

7.1 Necessary Parameters

With the complete MSCKF formulation in place, we have a collection of parameters, which must
be set and tuned. This section will give a comprehensive list of these variables and a brief ex-
planation of why the respective values were chosen to optimize the stereo-photometric MSCKF
output.

The feature extractor parameters are presented in table 4. The grid parameters control the
size of the grid and the number of features per cell, as in figure 17. The Lukas-Kanade feature
tracker is parameterized by its pyramids’ depth and the size of the patches used for feature
tracking in the pyramid. This iterative tracker is bound by a maximum iteration and a minimum
change in parameters - defined by the track precision. The tracked FAST features have a
threshold constraining the minimum illumination change around the point of interest.

Table 4: Feature extraction parameters

grid row 3-5

grid column 3-5

grid minimum feature number 2-4

Grid maximum feature number 4-6

Pyramid Levels 3

Patch size 15

max iteration 30

Track precision 0.01

Fast threshold 10

Gating quantile 0.05

All these parameters depend on the camera resolution and the scene recorded. The values
in table 4 are values that have worked well for Sun et al. [45] and shown robust results in our
experiments using the different recordings of the TUM dataset. A minimum pyramid level of 3
is typically necessary to allow useful feature measurements to pass for the MSCKF algorithm.
The values regarding grid size and amount of features are different for the various scenes and
datasets. Any grid size below three shows too much clustering of the features in the recordings
tested to allow the algorithm to function properly. Grid sizes larger than five need a large number
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of minimum features per grid to not disregard vital features. This would put a heavy toll on the
resources used by the algorithm.

Table 5: MSCKF algorithm parameters

moving window size 12-20

patch size 3

measurement noise values 0.01

initial covariance 0.01

Table 5 shows the parameters set for the MSCKF algorithm. It is parameterized mainly
through the size of the moving window, the initial covariance values, and the noise values.
The Mahalanobis gating test is further controlled through the desired quantile. The stereo-
photometric approach is additionally controlled through the measurement patch-size and the
image scale. While the most accurate result inside the error tolerance of the stereo-photometric
implementation was achieved using a 5 × 5 patch, the more robust approach (with more fea-
tures passing the gating test) was a residual using a 3 × 3 patch.

Tests showed, that using a moving window size below 12 frames reduced the accuracy in
the feature estimation too much, to allow for successful tracking for any of the implementations.
Values over 20 frames lead to a reduced number of features passing the gating test, which
decreased the value of the update step. The measurement noise values are set to 0.01, which
according to empirical evaluation maximizes the number of features passing over to the update
step. The values used by Sun et al. regarding the IMU noise parameters are retained, as are
the covariance matrix initialization values of 0.01 along the trace.

7.2 Moving Window Management and Patch Size

The proposed moving window frame removal steps from Sun et al. [45] estimate the lowest
information content frames based on the predicted change in position between the frames. The
frames with the smallest change to its neighbors are removed from the moving window. Zheng
et al. [62] on the other hand simplify this process by removing the oldest frame in the buffer.
As this latter approach has been shown to have worked for photometric implementations and
feature-based implementations by Mourikis et al. [20], the strategy was used for this stereo-
photometric implementation, as well as for the anchor-frame based MSCKF.

Zheng et al. evaluate different patch sizes, ranging from 4 × 4 to 7 × 7. Our implementation
had the least update step rejection when using 3 × 3 pixel patches, which is why the following
evaluation will use this patch size. Note, that the size of the patch in the real world is different
depending on the image resolution and the distance to the camera. The larger a feature patch
is, the greater the noise induced into the residual by any irradiance changes around the, but not
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connected to, the actual feature. Therefore these factors may contribute to the different results
in optimal accuracy between the two implementations. To reduce the computational stress on
the algorithm, the size of the image was down-scaled. This reduces the optimal value of the
patch size by the same factor and makes the image gradients more pronounced.

7.3 Methods of Evaluation

The hardware used for evaluation was a 2.8 GHz Intel Core i5 5675C quad-core processor with
8Gb of RAM. The TUM VIO dataset [74] was used to evaluate the performance of the presented
algorithms for a total of 14.5 hours of evaluation per algorithm.

The MSCKF pipeline is non-deterministic, as the feature extractor uses RANSAC. Therefore
when using the entire MSCKF pipeline for evaluation, the results would be skewed based on
the individual results of the feature extractor. As the feature extraction itself is independent of
the state estimation, the same random seed can be used for individual runs. This assures the
same features and feature rankings in every frame for every run with this seed. With this, only
the change in the update-step itself is evaluated. As the performance of the estimators varies
depending on the respective quality of the features, five differently seeded feature extractions
were used per dataset.

We compare the algorithms based on their relative change to ground truth per time-step, their
root mean square error (RMSE) when completing a run and their time until divergence if they
did not. The divergence rates per algorithm - the number of successful runs - per dataset are
measured as well. The CPU load of the algorithms on one kernel using ten frames per second
performance is measured to compare computational advantages. The playback speed of ten
frames per second was chosen, to ensure that none of the algorithms experienced any frame-
drops during testing. The error in the relative steps is a particularly interesting result for the
stereo-photometric implementation. It allows us to evaluate the mean accuracy of the algorithm
when operating within the limits of its error threshold. Any data past a point of divergence from
the ground truth is discarded for this evaluation. A filter is considered divergent, if any update
step change is larger than 0.5 meters, no update step has been generated for over one second
or if the relative error of the estimation step is larger than 100% for longer than one second.
As VIO has not global optimization, the relative pose error [83] is calculated using the change
in position as follows:

rrpe =

√∑
i

||trans(Ei)||2

Ei =
(
T̂−1
i T̂i+∆

)−1 (
T−1
i Ti+∆

)
using only the translation (trans(·)) component of the pose error for the error calculation.
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Ti is the true pose, T̂i is the estimated pose. i and i+ ∆ are the last and current measurement
time-step.

The selected evaluation methods are a combination of the evaluation steps used by various
other VIO research papers. This paragraph gives an overview of how theses papers assessed
their position estimation algorithms.

Mourikis et al. [20] evaluate their algorithm by measuring the final position error of the esti-
mated trajectory in a moving car. Sun et al. [45] evaluate their implementation using the EuRoC
dataset [68] and compare the root mean square error of the final position, as well as the CPU
load to various other state estimators (OKVIS, ROVIO, and VINS). Zheng et al. [62] evaluate
their photometric approach by creating their own dataset, using ground truth information from
a motion capture system. In their paper the results are compared to their implementation of
the feature-based MSCKF. The root mean square error for the entire trajectory is measured, to
show the expected performance. The 90th percentile error is computed throughout the run of
all recordings. The average represents the expected minimum performance of the algorithm.
OKVIS [46] is similarly evaluated by calculating the error over the course of the entire trajectory.
The datasets used are custom created and include 8 km long trajectories from car rides, walk-
ing in small circles and walking long indoor loops to test their loop-closure process. Trifo-VIO
[53] is evaluated by a custom made dataset, moving the sensors with a 6-axis robot, showing
a high amount of rotation. Additionally, the EuRoC dataset is used, to compare the design to
the stereo MSCKF and OKVIS. VINS Mono [49] also uses the EuRoC visual-inertial dataset to
compare the total trajectory error. The resulting accuracy is compared to OKVIS.

Unlike the EuRoC [68] and the KITTI dataset from Geiger et al. [84], the TUM dataset [74]
includes the camera’s exposure time in each frame. This information is used for the stereo-
photometric residual. The Trifo-VIO dataset [53] shows recordings of heavy rotation with little
translation and change of scenery compared to TUM and EuRoC recordings. For this reason,
the more sensor-information complete and scenery-expansive TUM VIO dataset [74] was used
for the following evaluation.

This dataset includes a multitude of different recordings with partial ground truth coverage
measured by a Motion Capturing system. The measurements include the shutter-time of a
stereo camera setup as well as IMU measurements and they supply an ample amount of
visual-inertial calibration data for noise measurement and camera and IMU calibration. For
these evaluations, the TUM supplied Kalibr calibration results were used. The cameras are cal-
ibrated using the equidistant model for distortion parameters. This TUM VIO dataset contains a
total of 28 different recordings. Five of these recordings are movement in a corridor with severe
lighting changes and heavy rotation. Six recordings move the camera through a large open
indoor space with heavy sunlight and shadow movements. Eight recordings of the outdoors
show spacious movement of the agent over the course of around 20 minutes per recording.
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Five recordings are supplied in which the camera is moved around solely inside a room with
constant ground truth information. These recordings contain a lot of rotation and twisting of the
camera setup. The final three recordings show the camera moving indoor and going down a
slide. Again, heavy lighting changes and long stretches of few features are present.

7.4 Evaluation Results

The following figures 25, 26, 27 and 28 as well as the table 6 give an array of overview-charts re-
garding the five different settings of the recordings in the TUM VIO dataset (Corridor, Magistrale,
Outdoor, Room, Slide). The averages over all recordings in the same setting are generated for
each algorithm and then compared. E.g. all six Room recording results are used to construct
an average measurement result for each of the three algorithms. Note, that from the various
results, only completed runs are used to construct the average.
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Figure 25: The average RMSE position error based on the change in movement compared to the ground
truth change, corrected for rotation and using all estimates before divergence detection

The most relevant measurement in VIO comparison is the relative error per timestep. This
type of evaluation can only be done with available ground truth. All recordings in the TUM
dataset have ground truth measurement in the room in which the recordings begin and end.
Note, that for this evaluation, the pose estimations are used up until the algorithm diverges -
any subsequent estimations are discarded. We will present and discuss the divergence rate of
the different filters separately.

Figure 25 shows the error in the delta change of the various approaches. On average over
all datasets, the error of the stereo MSCKF is, at 0.82%, half the size of the error produced
by the anchor-frame based estimator at 1,68%. The average for the stereo-photometric based
algorithm lies around 1.28%. As the Outdoors recordings show a significant increase in relative
RMSE for the other two algorithms - with the stereo-photometric approach diverging within the
first five seconds, these recordings distort the resulting comparison.
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If we only evaluate the timeframes during which all three algorithms converge, the result-
ing relative RMSE are 0.19%, 0.29% and 1.1% for the stereo, the anchor and the stereo-
photometric MSCKF respectively.
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Figure 26: The average CPU load during the non-divergent sections of the algorithm

CPU performance of the algorithm itself is shown in figure 26. Note, that as the feature
measurements were pre-recorded for these evaluations, the CPU measurements represent
the actual MSCKF algorithm, without the CPU heavy feature extractor front-end. The stereo-
photometric approach uses the most CPU power with a total average of 104.3% kernel usage.
The performance of the anchor-based feature estimator at on average 84.8% kernel usage is
marginally better than the power consumption of the stereo MSCKF with 87%.

Table 6: Nr. of completed runs per recording scene

Completed runsRecording Nr. of
runs stereo anchor-frame stereo-photometric

Corridor 15 12 12 2

Magistrale 18 8 0 0

Outdoors 24 3 1 0

Room 18 16 14 0

Slide 9 5 0 0

The number of successful runs and the average time before the filter diverges demonstrate
the overall robustness of the algorithm. While all of the MSCKF based implementations strug-
gle to complete the TUM datasets, the stereo-photometric design shows an especially high
divergence rate, with very specific points of failure in the different sets. We will discuss these
points of failure in the coming section. Table 6 shows the overall success rate of the algorithm
split into the different types of courses recorded (Corridor, Magistrale, Outdoor, Room, Slide).
The divergence rate over all datasets is 42% for the stereo MSCKF, 67% for the anchor-frame
MSCKF and 97% for the stereo-photometric MSCKF.
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Figure 27: The average percent of divergence over the entire time of the scenes

Figure 27 shows the average amount of seconds the VIO algorithm remains stable in the
respective course type. Note, that for the previous evaluations, only the time in which the
algorithm showed convergent behavior was used. These results are relative to our definition of
divergence, as explained in the previous section. The total percentage of convergent time over
all datasets is 70% for the stereo MSCKF, 52% for the anchor-frame MSCKF and 2% for the
stereo-photometric MSCKF.
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Figure 28: The average RMS error when comparing the starting position to the final position

Figure 28 compares the resulting final position inside the room with the available ground truth
data information. Compare this to table 6, which shows how often the respective algorithms
succeeded in tracking through the entire course of the algorithm.
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Figure 29: Comparison of the final position error split up to show the error in each axis - for the two
datasets with the most complete runs
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As visualized in figure 28 the total accumulated error for the different implementations tends
to be quite large. The stereo-photometric implementation has very few completed runs, as it
tends to diverge at specific points in the dataset. This comparison therefore mainly shows the
stereo based approach and the anchor-frame based approach. The stereo based approach
tends to have a reduced RMSE. Splitting the resulting error up per axis, as shown in figure 29,
we can see that generally, the z error is smaller than the x and y error. While between the two
different types of update steps the x and y error components remain largely the same, the z
error in the anchor-frame estimation is over five times larger than the original design. When
visualizing exemplary recordings of Room 4 in figure 30, the z-height drift becomes visible.
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Figure 30: Error in z-axis estimation in Room 4

8 Discussion and Next Steps

The preceding chapter clearly shows a lack of robust behavior in the stereo-photometric im-
plementation. This chapter will analyze the different reasons as to why this is the case and
present possible solutions. The first section 8.1 will look at error tolerances in the feature pro-
jections with specific examples. In the subsequent section 8.2, we will present the difference
between low-quality and high-quality features and the algorithms reaction to various input. In
section 8.3, the number of features passing through the outlier-rejection are compared and cor-
related with the rate of divergence. Section 8.4 discusses the results of the anchor-based CPU
improvements and leverages them against the decreased accuracy shown in our test.
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8.1 Error Tolerance

As shown in the image summary of the photometric residual in figure 20, the algorithm is de-
signed to minimize errors in patch misalignment. This approach works well for patch move-
ments close to the original patch, as the direction of the gradient is correct in the local region of
the feature. The farther the patch moves outside the original zone, the less likely it is, that the
irradiance of the reprojected patch correlates with the original irradiance. Therefore, the greater
the error in the prediction of the patch position, the poorer the performance of the correction
step in the stereo-photometric residual. Compare this to the feature-based correction step,
where the feature position itself is used, and the inaccuracy in the residual is only a function of
the feature tracking itself. With this implementation, the feature estimation error is essentially
correctable over the entire size of the image.
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Figure 31: Error in prediction of the first two seconds of Room 3 compared to ground truth and the
resulting feature reprojection errors versus the resulting pixel patches
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The error tolerance in the stereo-photometric implementation is far smaller than in the feature-
based implementation. Therefore, both the IMU-based prediction and the individual correction
steps must operate within the error margins allowed by the patch size. For this reason, the error
tolerance is a function of the patch size and the accuracy of the prediction. Figure 31 shows
the error in the prediction of the Room 3 recording. The initial error of the IMU prediction - and
the resulting estimated feature position - is far larger than the patch size would allow for. This
is shown by the resulting patch projections in the frames. Note, that the feature position based
estimators are easily able to correct this shift, while the stereo-photometric implementation
diverges within the first second.

The same phenomenon of high errors in the prediction leading to the divergence of the
stereo-photometric filter is observed in multiple instances and is a prime reason for the lack
of robust behavior. Further examples include the prediction in Magistrale 1, Outdoor 5 and
Slide 2 in figure 32.
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Figure 32: Various examples of erroneous prediction steps going beyond the maximum tolerance of the
photometric implementation

Another factor in the update step calculation is the feature position estimation in space, which
is intrinsically inferior in the anchor-based approach (refer back to figure 4), adding to the inac-
curacy of the stereo-photometric implementation.

8.2 Feature Patch Quality

The feature patches quality is determined by how pronounced the gradient is and how well
the gradient change in the surrounding of the patch correlates to the gradient of the patch
itself. Different patch examples can be seen in figure 33. Patches are more likely to result in
a correct update step if the image gradient is more pronounced and well defined. The more
defined a feature surrounding is, the more accurate its tracking over the course of multiple
images can be. A weaker patch gradient forces larger residuals to move the resulting correction
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farther as the necessary change in u, v direction is large. This is especially problematic when
the surroundings of the patch - into which the projection might fall - show a higher change in
irradiance compared to the gradient itself.

High-gradient 
corner patch

High-gradient 
edge patch Low-gradient patch

Figure 33: Three common types of patches output from the feature extracting process

High patch gradients tend to behave more robust regarding these phenomenons, as high er-
roneously associated irradiance changes only produce small changes in the correction. There-
fore, high-gradient patches are generally desirable to use in the update step. Note, that this
is exactly the filter result of the Mahalanobis gating test: low-patch gradients are removed due
to them lowering the values of the propagated covariance matrix - decreasing the chance of a
residual passing (see chapter 6.7).

The patch size controls how much of the feature surroundings are included in the gradient and
the residual. The larger the patch is, the greater the probability, that fragments of non-feature
elements skew the gradient direction and therefore the resulting update. A smaller patch size
is preferable, so long as the correlated residual patch is large enough to encompass the actual
facets, which make the feature locally unique and create a well-defined update step.

8.3 Amount of Accepted Features

Figure 34 shows an example run of a Corridor recording, comparing the number of features and
the relative accuracy. The number of features used per update is plotted in orange. The blue
plot visualizes the relative RMSE accuracy corresponding with the update step. Note, that the
plot only covers the section of the recording with available ground truth, as we can only measure
relative RMSE in these sections. In timestamp one, at half a second, a strong relative error is
measured. This error is similar to the one visualized in figure 31 and a common phenomenon
when the agent is not moving. The red marking at timestamp two shows the time of divergence
for the stereo-photometric MSCKF, which correlates with the peak relative error in the anchor-
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frame MSCKF implementation. This peak is not nearly as pronounced in the stereo MSCKF.
The same phenomenon can be seen at timestamp four. Timestamp three shows a peak in
the number of features detected by the stereo MSCKF which is missing from the anchor-frame
MSCKF. This increased number of features might explain why the error remains lower in the
following second. Comparing the number of features measured in the time between timestamp
three and four shows, that the stereo MSCKF consistently measures more features. Note, that
during the time between timestamp one and two, the stereo-photometric MSCKF uses far fewer
features than both feature-based implementations.

We see, that the number of features in the stereo-photometric approach is 89% lower than
in the anchor-frame MSCKF and experiences a substantial dip moments before diverging. The
low number of features is explained by the strict outlier removal process, which is chosen to min-
imize erroneous update steps created by patch projections outside the immediate surroundings
of the original patch. In our experiments, the divergence rate dropped further, the more lenient
the outlier detection was tuned (refer to section 4 for tuning parameters).

8.4 Anchor-Frame Modification

The evaluation in chapter 7 shows a decrease in performance accuracy when switching from
the anchor-frame MSCKF (constraining the estimated feature position via the first observation)
to the stereo MSCKF (estimating the feature position constrained only by measurements). The
time until divergence decreases by 30% from 97% to 67% and the relative RMSE more than
doubles from 0.82% to 1.68%. This decrease in accuracy is especially noticeable in the Magis-
trale and the Slide recordings, where the reduced estimation precision results in the majority of
the evaluations diverging. The sections in which divergence rates peak, are after a few moments
of standing still or during reduced lateral movement. Both of these scenarios show a decrease
in features passing the outlier-rejection phase. This is true for both the stereo MSCKF and the
anchor-frame MSCKF, but the anchor-frame MSCKF’s drop in features is far pronounced, see
figure 34.

The marginal increase in CPU performance of the anchor-frame based MSCKF is due to
the reduction in complexity for the feature estimation, as well as the smaller nullspace matrix
needed in the calculations of the update step of eq. 50. When leveraging this 2.2% decrease in
resource necessity against the substantial reduction in estimation accuracy, the stereo MSCKF
formulation remains the more desirable update procedure.
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Figure 34: Comparing the number of features used in the update step for each algorithm to the relative
RMSE in each time step using the first 20 seconds of the Corridor 1 recording
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8.5 Improvements

As the evaluation chapter has shown, the stereo-photometric approach in its current form is in
no way fit to be used as an alternative to the stereo MSCKF. While we can see stretches of
convergence during ideal segments, the lack of robustness when diverging past the error toler-
ance of the patch makes the algorithm no match for a feature-based estimator. This section will
propose some adaptions of the algorithm, which might increase stability and accuracy.

Note, that the work of Zheng et al. [62] proposes a photometric adaption to the mono-MSCKF
and achieves more preferable results than the estimator presented in this thesis. Comparing
both approaches, the stereo-photometric design is similar. We chose to pre-undistort the im-
ages into a pinhole model, before collecting the irradiance information from the image. Zheng
et al. propose using the fish-eye model directly in the residual description (compare to eq.
65, where the pinhole model back-projection onto the image plane is used). Additionally, they
correct for the camera vignetting in the measurement function itself, by modeling the lens at-
tenuation through a gamma correction model and rectifying the image irradiance. Designing
the filter to be consistent means using the first available estimates of the IMU prediction of the
frame position in the update step. This has been shown to increase the filters estimation accu-
racy by Li et al. [85] and is used in the implementation of Zheng et al. [62] and Sun et al. [45].
As shown by Li et al. this change shows effectiveness primarily on long recordings.

In addition to these incremental improvements to the algorithm proposed by Zheng et al. an
improvement might be a hybrid design using the feature position and the semi-direct approach,
to combine the long-range feature correction capabilities with the accuracy of the patch-based
implementation in proximity the original feature. The residual would be a construction of both
the feature position u, v and the patch irradiance ξ. A different hybrid implementation fusing the
semi-direct approach with the direct approach could allow for a reduction in CPU load - which
direct implementations tend to suffer from - while maintaining their accuracy improvements.
This design would increase the size of the patch points in the image the farther away the patch
is from the feature origin - this is similar to the image pyramid design utilized by ROVIO [48].

Broadening the range of feature descriptors, such as Trifo-VIO [53] does (matching both
feature points as well as lines) might allow for increasingly flexible filters. Being able to select
the information extracted from the images based on the current scene would allow for an on-air
switch between more robust versus more accurate descriptors.
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9 Summary

The inventory-tracking quad-copter by the company D-Aria [18] relies on accurate position esti-
mation to navigate in warehouses. For this reason, a highly efficient, accurate, and robust state
estimator is a necessity. The goal of this thesis was to implement a stereo-photometric update
calculation into the MSCKF pipeline by Sun et al. [45]. Based on the results of Zheng et al. [62]
the design was presumed to increase filter-estimation accuracy.

The design of the MSCKF was explained and derived in significant detail in chapter 4. Along-
side the survey of position estimators in chapter 3, the chapter not only presents an entry-point
for the reader into VIO and the MSCKF, but also allows for a full picture of both algorithm ex-
pansions demonstrated in this thesis. The novelty factor of this thesis is the derivation and
implementation of a patch-based stereo-photometric position estimator in chapter 6. Focus has
also been put on a novel anchor-frame based feature modification in chapter 5, a precursor to
the stereo-photometric MSCKF.

The MSCKF itself uses a sliding window of frames, tracking features over the course of this
window. The feature movements inside this sliding window are used to correct the pose esti-
mation of the IMU. The stereo-photometric MSCKF extracts pixel patches around the feature
in both cameras and compares the original patch around the feature to a projection of the
patch, based on the IMU estimation. The anchor-based approach is a precursor to the stereo-
photometric algorithm and reduces the dimensionality of the feature position estimation, thereby
reducing CPU load but also estimation accuracy. The anchor-based MSCKF shows a 2.2% re-
duction in CPU load but a surprising loss of accuracy (from 0.8% to 1.7% relative RMSE) and
robustness (from 42% to 67% divergence rate).

We do not believe, that the slight reduction in CPU usage by the anchor-frame MSCKF is
worth the substantial deterioration in pose estimation. The stereo-photometric MSCKF is not
robust enough to be used in any practical setting. While the estimation accuracy for the con-
vergent stretches of time is within range of the stereo and anchor-based MSCKF, the high di-
vergence rate shows, that further improvements and tuning are vital for the stereo-photometric
approach, to become a viable alternative for the stereo MSCKF. For the time being, due to its
well-balanced CPU load vs. pose accuracy, the most promising VIO pose estimator for the
company D-Aria remains the stereo-MSCKF.
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List of Abbreviations

1D one dimensional

2D two dimensional

3D three dimensional

BRIEF Binary Robust Independent Elementary Features

CPU Central processing unit

e.g. for example

EKF Extended Kalman Filter

ESKF Error-State Kalman Filter

EuRoC European Robitics Challenges

eq equation

FAST Features from Accelerated Segment Test

GPS Global Positioning System

IMU Inertial Measurement Unit

KF Kalman Filter

LSD Large-Scale Direct

m meter

MAV Micro-Aerial Vehicle

MiR Mobile industrial Robot

MSF Modular sensor fusion

MSCKF Multi-State Constraint Kalman Filter

nr. number

OKVIS Open Keyframe-based Visual-Inertial SLAM
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ORB Oriented FAST and Rotated BRIEF

RAM Random Access Memory

RANSAC Random sample consensus

rel. relative

RGB Red - Green - Blue

RMSE Root Mean Square Error

ROVIO Robust Visual Inertial Odometry

s second

SIFT Scale-invariant feature transform

SLAM Simultaneous Localization and Mapping

SVO Semi-direct Visual Odometry

TUM Technische Universität München

VINS Visual-Inertial Systems

VIO Visual Inertial Odometry

VO Visual Odometry

vs. versus
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A Extended Kalman Filter

This chapter describes how Kalman Filters (KF) generally work - without going into detail on
the mathematical derivation of the concept. We also define the Kalman Filter notation as used
in this thesis.

Figure 35: IMU measurements condensed into a histogram resembling a Gaussian function

A.1 Probabilistic Estimation

This section is based on the books regarding probability theory by Grinstead and Snell [86] as
well as Rice [87]. An explanation of the Kalman Filter relies heavily on the concept of Gaussian
distribution, which is defined through a mean µ and a variance σ2. The lower the value of the
variance, the higher the probability is, that a randomly sampled variable x from this distribution
is near µ. The noise measurement of a still IMU - as discussed appendix C - resembles a
Gaussian distribution, see figure 35.

This concept can be expanded to multiple dimensions. Figure 36 shows two Gaussian curves
combined into a two-dimensional Gaussian. In multiple dimensions, the mean scalar µ is in-
stead a vector µ and the variance turns into the covariance matrix Σ. The diagonal elements of
this covariance matrix are the variances of the elements σ2

x, σ2
y . The off-center values represent

the joint variability of the respective variables - how much the variable x influences the variable
y.
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Σ =

 σ2
x σxyσy

σyx σ2
y



Figure 36: two-dimensional Gaussian function

A.2 Kalman Filter

The following section summarizes the work of Thrun et al. [7] and Zarchan et al. [88]. The
Kalman Filter is used regularly for position estimation in mobile robotics [7, 88]. It uses one
input to predict its change of state (typically through a dynamic model of the system) and then
corrects this prediction with some other measurement. The filter predicts both the mean and
the covariance of the state. A simple example is a robot moving in one dimension, estimating
its current pose through an IMU and wheel-odometry. A Kalman Filter is designed to make
a prediction independent of any information other than the one in its current state and using
only the current prediction input and its current measurements (note that the prediction input
is commonly called the control input). This independence of any previous information is called
a Markovian assumption. In the robot example, the state could be a vector constructed of the
position- and the velocity estimation. The filter not only estimates the next state vector (the µ)
from its inputs but also estimates the covariance matrix Σ - the certainty of its estimation.

Generally, we describe the relationship between the error state and the true state as

true state = nominal state + error

where the nominal state describes the estimate of the state. The notation is defined in tables 7

and 8.
The process noise represents the uncertainty of the underlying model in the prediction, the

sensor noise is the intrinsic uncertainty in the correction step. We will now look at these two
steps, the prediction and the correction including their mathematical formulation. The steps will
then be expanded into the Extended Kalman Filter.
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Table 7: State types

true state x

nominal state x̂

error x̃

Table 8: Covariance and noise

covariance matrix P

process noise Q

sensor noise R

Using a dynamic model of the underlying system (eg. the model of the one-dimensional
robot), the prediction input is used to predict the robot’s next state. Note that this input can
be from any source, be it a sensor input or a control input. In the robot example, we choose
the IMU measurements to be used in the prediction, as it is desirable to have a higher rate of
predictions than corrections. The IMU acceleration information contains noise and biases, so
integrating the data adds errors to the current state. An approximation of this error is expressed
in the process noise Q. During each prediction, the state estimation x̂ is changed, along with
the covariance around this state. The matrix F is a linear predictor of the next state based on
the current state, the vector u is the prediction input, which is mapped to a change in the state
prediction through the matrix B. The current timestep is represented by the index k. Note that
all of these matrices can be different in each time-step.

x̂k+1 = Fkx̂k + Bku

Pk+1 =FkPkF>k + Qk

During the update step, the measurement information in the vector z is used. The true mea-
surement is compared with the expected measurements based on the predicted state x̂ using
the linear sensor model matrix H. This results in what we call the residual. Using an updated
covariance matrix and the two noise parameters Q and R, the variance terms in the covariance
matrix are minimized through the Kalman Gain. Using this Gain and the residual, the state
estimation is updated alongside the covariance matrix.

rk = zk −Hkx̂k

Kk = PkH
>
(
HkPkH

>
k + Rk

)−1

x̂k+1 = Kkrk

Pk = (I−KkHk) Pk
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A.3 Nonlinear Estimation Function

The Kalman Filter model is limited by its inherently linear approach to prediction and correc-
tion through the F, B and H matrices. The Extended Kalman Filter [7] allows for nonlinear
propagation of the state and linearizes these functions to properly propagate the covariance
matrices, which need to be linearly transformed to preserve their Gaussian properties. This is
done through a first-order Taylor approximation of the functions yielding a Jacobian matrix. For
completeness, here is the full EKF propagation step:

x̂k+1 = f(x̂k,u)

Pk+1 =FkPkF>k + Qk

and the update step:

rk = zk − h(x̂k)

Kk = PkH
>
(
HkPkH

>
k + Rk

)−1

x̂k+1 = Kkrk

Pk = (I−KkHk) Pk

The function f(·) is the prediction function operating on the current state estimation and the
prediction input. h(·) remaps the current state estimation into the expected measurements. The
respective linearized Jacobians are F and H. A note regarding error accumulation: If a state is
observable, such as the rotation about the x- and y-axis of the IMU, then the error is bounded. If
the error is not observable, such as the z-axis rotation, then the error can grow without bounds.
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Linearizing the residual to receive the Jacobian H is done as follows:

r = z− ẑ + n

using first-order Taylor approximation results to:

r = h(x)− h(x̂) + n (74)

r = h(x̂ + x̃)− h(x̂) + n

r ' h(x̂) + Hxx̃− h(x̂) + n

r ' Hxx̃ + n (75)

where Hx is the Jacobian of the function h() with respect to x.

While the Kalman Filter operates optimally, as the propagation functions are linear, the Ex-
tended Kalman Filter loses some accuracy through its linearization. Various implementations
try to minimize the linearization error. This includes the iterated EKF and the Unscented Kalman
Filter. The strategy commonly used in VIO systems is the Error-state Kalman Filter, which will
be explained in the following chapter.
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B Camera Models

This section will first introduce a common camera description, the pinhole model. The cameras
used in this thesis will be modeled following this approach. Further, this section will give a sum-
mary on stereo-camera theory, as they are a common tool in VIOs.

P

image plane

focal plane

camera frame

u, v

feature

pinhole
object

image plane

image plane

������������� ����������

Figure 37: The pinhole model and a schematic of the projection from the camera frame to the image
plane

The pinhole camera model derives its name from the pinhole camera, which passes the light
reflecting from an object through a small hole to create an inverted image on the other side [89],
see figure 37. As can be seen from this figure, the image plane can be assumed to be in front or
behind the camera center, which is the point where the image light passes through. Assuming
the cameras focal length f = 1, we can project a point represented in the camera coordinate

frame by
[
X Y Z

]>
in R3 onto this image plane at f = 1 by calculating


u

v

1

 =


X
Z

Y
Z

Z
Z


with [u v]> the coordinates of the point in R2.
To u, v representation is independent of the cameras focal length and principal point. To

calculate the pixel coordinates of the point P, we use the true focal length of the camera f as
well as the position of the principal point p.
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K =


fx 0 px

0 fy py

0 0 1

 P = K


u

v

1


where K is described as the intrinsic camera parameter matrix [90] - it maps pixel coordi-

nates to points in the camera frame.

A stereo-camera setup needs additional extrinsic camera parameters to express the change
in pose between the first and the second camera, see figure 38.
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Figure 38: Stereo-cameras and the disparity between them with a visualization of the triangles used to
calculate the depth of the feature in space

An advantage that stereo setups yield is the availability of true geometric information regard-
ing the camera measurements. The determined relation between the two cameras - often de-
scribed as the stereo baseline - allows for accurate triangulation of features with accurate scale
information. This information is calculated using the disparity of the projection of the same fea-
ture point in both images of the stereo-camera setup. This disparity is inversely proportional to
the depth of the feature point in the projected image, see figure 38.

Both the intrinsic and extrinsic parameters can be extracted either directly from the cam-
era setup (measured) or by using calibration tools such as Kalibr [91, 92] which conveniently
calibrates additional parameters such as camera distortion parameters (depending on the dis-
tortion model, see [93]) and the relative pose to an IMU.
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C Inertial Measurement Unit

The inertial measurement unit (IMU) sensor returns the acceleration and angular rate of the
body it is attached to. Measurement values are subject to noise and biases; this section will
summarize IMU modeling and implementation.

x

y

z

IMU

Figure 39: Axis of an Inertial Measurement Unit

To achieve a pose estimation from an IMU alone, the accelerometer values must be integrated
twice. This inevitably increases any noise or biases, making this process unstable for longer
stretches of time. To minimize these effects, an accurate estimation of the biases and the noise
is necessary. The accelerometer in the IMU senses the gravitational pull, making rotations
around the x- and y-axis observable (see axis in figure 39). Global rotation about the z-axis is
not observable. The gyroscope senses the earth’s rotation and if this component is not modeled
in correctly, integration may be subject to increased drift [22]. Noise in recorded measurements
of both the accelerometer and the gyroscope are mainly of mechanical or thermal nature, as
are the experienced biases [94]. A simple model of the IMU gyroscope from Flenniken et al.
[95] is,

g = r + cg + bg + ng

where r is the true rotation rate, cg is some constant offset, bg is a walking bias and ng is the
sensor noise of the gyroscope. A similar model exists for the accelerometer

a = ẍ+ ca + ba + na.

The noise parameters ng, na are assumed to be normally distributed with zero mean, and
the bias parameters bg, ba are modeled through a first-order Markov process. The bias and the
constant offset are merged into a single parameter in most VIO specific works.
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D Quaternions

This chapter presents the concept of quaternions and their general notation. After explain-
ing the advantages, which imply the reasons why quaternions are used throughout this work,
this chapter will form a more intuitive understanding of quaternions for the reader. In parallel,
quaternion mathematics and their relation to rotation matrices as well as their small-angle ap-
proximation are shown. The last concept is crucial to significant simplifications in the coming
chapters.

There are multiple concepts for three-dimensional rotation representation. Among the most
common ones are euler angles, rotation matrices, axis-angle representations and quaternions
[96]. Expressing rotations in quaternion multiplication is the most efficient description concern-
ing the number of calculations [21]. Further, this expression is minimal when wanting to avoid
gimbal-lock and also is more numerically stable than other approaches, as Shuster et al. [21]
show.

D.1 Intuitive Quaternions

Rotations in a plane can generally be expressed by a single angle, assuming a predefined
orientation - a counter-clockwise a.k.a. positive rotation. Besides the common x-y coordinate
frames for 2d representation, complex numbers provide another, with the imaginary axis Im
being normal to the real axis Re.

Re

Im

Figure 40: Multiplying a complex number with i
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When multiplying any complex number p, eg. p = 4 + 1i, by the complex number i, we can
observe a rotation of the resulting point in the complex plane around the origin, see figure 40.
An arbitrary rotation around the origin can be achieved analogously to how they are commonly
known through rotation matrices. Rotating the example vector [x y]> around the angle θ for
example can be written as: x′

y′

 =

cosθ −sinθ

sinθ cosθ

 x
y

 .
For the complex number plane, instead of using this matrix representation, the multiplication

of two complex numbers is enough to result in an unambiguous rotation.

pq = (a+ bi)(cos θ + i sin θ) (76)

a′ + b′i = a cos θ − b sin θ + (a sin θ + b cos θ)i (77)

Both representations are equivalent in their resulting rotation.

A similar concept of rotation in the two-dimensional plane can be applied into four dimensions
and has been famously done by Rodrigues in 1840 and Hamilton in 1843 [97]. A quaternion
is built up of four components: one real part and three imaginary parts called i, j and k. A
quaternion q can be expressed as:

q = a + bi+ cj + dk (78)

where a, b, c and d are real numbers scaling the respective components. As the following
shows, it is not possible to construct a three dimensional quaternion to represent rotations in
three dimensions.

If the two-dimensional Complex numbers are extended by a second irrational number j, the
following number is a valid general description:

t = a+ bi+ cj

multiplying this t by a different complex number, it shows that

ti = (a+ bi+ cj)i = −b + ai+ cij

where ij has no valid representation in this three-dimensional space. Therefore, the additional
dimension for k = ij is included to receive the four-dimensional quaternion description of eq.
78.

If the same rotation operation as in eq. 76 is applied to this new quaternion - to achieve a
desired rotation in the plane spanned by the real axis and i (as this operation does in the case
of the Complex numbers):
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ip = i(a + bi+ cj + dk)

ip = ai− b + cij + dik

ip = ai− b + ck − dj

this operation rotates the real - i plane by the expected 90◦ but also the j - k plane by 90◦.
This rotation is not preventable - but by defining the anti-commutativity property,

ij = −ji

the right-multiplication of i now inverts the second rotation. Using this property, it is possible
to negate the ’unwanted’ rotation in the j - k plane through right-multiplying i.

ipi = i(a + bi+ cj + dk)i (79)

ipi = − a− bi+ cj + dk (80)

This shows, that the operation always preserves - and doubles - the rotation around the
real axis and negates the unavoidable second rotation. To uphold the rotations around the
other imaginary plane and leave the real axis untouched, the quaternion p is multiplied by the
negated rotation quaternion, −i in this case:

ip(−i) = a + bi− cj − dk.

Again, this operation, the rotation of p now doubles the rotation along the affected imaginary
axis i and leaves the orientation of the real axis, untouched.

This concludes in the general quaternion rotation description:

q⊗ p⊗ q−1 (81)

where the operator ⊗ is the general case of the quaternion multiplication. It is the multidi-
mensional case of the simple multiplication by i done in the previous calculations and will be
detailed in the following chapter. From eq. 76 we can see, that the angle of rotation encoded in
the rotation quaternion q in eq. 81 must be half the desired angle, as this rotation is committed
twice to the quaternion p.

As seen in figure 41, an easy way to visualize the rotation a quaternion describes is by using
the imaginary values b·i, c·j and d·k as a description of a vector in 3D space (cyan colored line).
The real part a of the quaternion then describes the rotation around this vector, as visualized
by the black arrow. The remaining part of this chapter will explain why this visual representation
is valid.
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i

j

k
Re

Figure 41: Quaternion rotation represented in axis-angle form

As this chapter has layed out, a quaternion describes the general rotation of a rigid body in
four dimensions. The projection of this rotation around the axis i, j and k into three dimensions
allows for a description of rotation in three dimensions. This projection is key to understand
the visually accessible description of quaternion rotations of figure 41. To achieve a pure three-
dimensional rotation, the real axis dimension is constrained by the anti-commutativity of the
quaternion. This is used to rotate the hypercube back into place regarding all rotations along
the real axis through multiplication of q−1. The remaining rotations around the ij, jk and ki

planes are not inverted but doubled (compare to eq. 79). This projection from four to three
dimensions is best visualized by the quaternion visualization tool by Grand Sanderson [98], in
which stereographic projections are used as an aid to understand the concept.

D.2 Quaternion Mathematics

After some brief discussion regarding quaternion notation and structure, this section will present
the mathematics used in the context of quaternions used in this thesis.

This previous section has introduced

i2 = j2 = k2 = ijk = −1

and the general quaternion description

q , a + bi+ cj + dk
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which can also be seen as

q ,

 qv

qw

 =


qx

qy

qz

qw

 .

Here the real element qw is located underneath the vector of the imaginary numbers qv.
Note, that we use one of two quaternion types called ijk compared to the hamilton notation. A
comparison of the two styles can be found in the work of Sola et al. [22]. Although there are
no conceptional changes between these styles, some calculations are structured differently.
The reason for choosing the ijk formulation is that it is commonly used in VIO implementations
generally and in the MSCKF implementations in particular.

With quaternion notation defined, the main quaternion properties are now briefly presented.
For more details regarding quaternion mathematics, again we refer to Sola et al. [22].

The quaternion product is defined by the ⊗ operator and results in

p⊗ q =


pwqx + pxqw + pyqz − pzqy
pwqy − pxqz + pyqw + pzqx

pwqz + pxqy − pyqx + pzqw

pwqw − pxqx − pyqy − pzqz


and is generally non-commutative, as is visible from the equivalent quaternion product def-

inition

p⊗ q =

 pwqv + qwpv + pv × qv

pwqw − p>v qv


where the non-commutative cross product is used. The product is associative

(p⊗ q)⊗ r = p⊗ (q⊗ r).

The quaternion multiplication can be alternatively expressed by a matrix-vector multiplication,
where, as the product is non-commutative, two different matrix structures exist.

q1 ⊗ q2 = [q1]Lq2 and q1 ⊗ q2 = [q2]R q1 .

The left multiplication matrix [q2]L and the right multiplication matrix [q2]R are constructed as
follows
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[q]L =


qw −qz qy qx

qz qw −qx qy

−qy qx qw qz

−qx −qy −qz qw

 , [q]R =


qw qz −qy qx

−qz qw qx qy

qy −qx qw qz

−qx −qy −qz qw

 (82)

which may be written as

[q]L = qwI +

 [qv]× qv

−q>v 0

 , [q]R = qwI +

 − [qv]× qv

−q>v 0

 .
Here, the cross product matrix [a]× is defined as

[a]× ,


0 −az ay

az 0 −ax
−ay ax 0


The identity quaternion is

q1 = 1 =

 0v

1


The conjugate quaternion is defined as

q∗ ,

 −qv

qw


and the inverse quaternion as

q−1 = q∗/‖q‖2

where

q⊗ q−1 = q−1 ⊗ q = q1

If the quaternion is a unit quaternion

‖q‖2 = q1

then
q−1 = q∗.

As rotation quaternions are unit quaternions, this property results in the previously mentioned
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rotation eq. 81, simplified to using the conjugate of the rotation quaternion q

q⊗ p⊗ q−1 = q⊗ p⊗ q∗

where the vector p is a pure quaternion, with no real entry. The resulting vector in 3D space is
described by the i, j and k components.

To define a rotation matrix C(·) resulting from any rotation quaternion we can finally use the
following relation from [22]

Rp = q⊗ p⊗ q∗

R = C(q) = (q2
w − q>v qv)I + 2qvq

>
v + 2qw[qv]×

D.2.1 Small-Angle Rotation

As very often, the considered rotations are very small, it is feasible to approximate these small-
angle quaternions through linearization. This further allows the number of components needed
for its representation to be reduced to three.

Any unit quaternion can be described by the relationship

q =

 u sin 1
2θ

cos 1
2θ


Should the angle of q be small, we can use the relation of eq. 2 to simplify C(q) using a

first-order taylor approximation, we can calculate

C(q) ' C(

1
2θ

1

) =

= (12 +
1

2
θ

1

2
θ)I + 2

1

2
θ

1

2
θ + 2 · 1[

1

2
θ]×

Where we marginalize any products of errors, resulting in

= (1− 0)I + 0 + [θ]×

C(q) ' I + [θ]×
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The equivalent calculation can be done for C(q)> under the assumption of small-angle
quaternions and using the definition of conjugate quaternions

C(q)> ' C(

1
2θ

1

)> = C(

−1
2θ

1

) =

= (12 − 1

2
θ>

1

2
θ)I + 2

1

2
θ

1

2
θ> − 2 · 1[

1

2
θ]×

Where we marginalize any products of errors, resulting in

= (1− 0)I + 0 + [θ]×

C(q)> ' I− [θ]×

D.2.2 Quaternion Derivative

The change in rotation over time expressed in a quaternion can be calculated using the change
from q(t) to q(t+ ∆t) and using these descriptions in the derivation

dq(t)

dt
, lim

∆t→0

q(t+ ∆t)− q(t)
∆t

We can set q(t+ ∆t) = q ⊗∆q to receive

q̇ = lim
∆l→0

q ⊗∆q − q
∆t

= lim
∆t→0

q ⊗
([

∆1
2φ
1

]
−
[
0
1

])
∆t

= lim
∆t→0

q⊗
[
∆1

2φ
0

]
∆t

We can now define the angular rate as

ω(t) ,
dφ(t)

dt
, lim

∆t→0

∆φ

∆t

which is simply the change of perturbation per timestep.
Using this, we can now simplify to

q̇ =
1

2
q⊗

ω
0
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